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This paper delivers a flexible formalism for handling equilibrium ring formation. 
Based on graphical models of polymerization, it includes as special cases the 
Flory Stockmayer RAr model, the Flory AIRBg model, and Gordon's 
branching process formalism. When simple ring formation occurs in equireactive 
systems, it also includes the Jacobson-Stockmayer RA 2 and Hoeve RAj models. 
The formalism is built from first principles in statistical mechanics and all 
assumptions are clearly stated. All parameters are given in terms of ther- 
modynamic variables. With ring weights generalizing the Jacobson-Stockmayer 
Gaussian random walk, the formalism yields results for branching RAy, AfRBg, 
and RAf-  RBg polymer models. Equireactivity then gives explicit solutions. The 
equireactive RAf- RBg model compares favorably with data from gel-point vs. 
dilution experiments. With the exception of the Spanning Tree Approximation, 
graphical models of polymerization suffer from combinations of the following 
defects: equireactivity assumptions, restrictions to one type of monomer or 
bond, absence of rings, or absence of fused rings. This paper provides a promis- 
ing "exact" approach to handling all of these problems simultaneously. 

KEY WORDS: Flory RAy. model; random polycondensation; equilibrium 
ring formation. 

1. I N T R O D U C T I O N  

Flory 's  I1~ RAy model  is the oldest parad igm of chemical polymerizat ion.  In  

the RAy model,  each m o n o m e r  in a polymer  has f funct ional  groups of 
type A. The monomers  react subject to three assumpt ions  (see Fig. 1): 

1. Func t iona l  groups of type A react with one another  to form symmetric  
(A-A)  bonds  between the monomers .  

2. In t ramolecu la r  reactions do not  occur, so that  only b ranched-cha in  
(noncyclic) polymers are formed (i.e., polymers with rings are neglec- 
ted). 
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Fig. 1. (a) The RAf model. This figure shows two RA 4 monomers combining to form a 
dimer. The bonds between monomers are of the symmetric A-A type. (b) The AjRBg model. 
This figure shows two AzRB 2 monomers combining to form a dimer. The bonds between 
monomers are of the asymmetric A B type. (c) The RAFRBg model. This figure shows an 
RA 4 monomer combining with an RB 3 monomer to form a dimer. The bonds between 
monomers are of the asymmetric A-B type. 

3. Flory 's  Principle o f  Equireactivi ty:  Subjec t  to c o n d i t i o n s  (1) a n d  (2), all 

f unc t i ona l  g r o u p s  are  e q u a l l y  react ive .  

Le t  ~, the  ex t en t  o f  r eac t ion ,  be the  p r o p o r t i o n  of  A g r o u p s  which  

h a v e  reacted.  F l o r y  p o s t u l a t e d  tha t  a gel c o r r e s p o n d e d  to  an  inf ini te  

ne twork .  An  inf ini te  n e t w o r k  occu r s  at  the  cr i t ical  ex ten t  of  r e a c t i o n  ~c: 

( f -  1 ) ~ . =  1 (1.1) 
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By analogy with the chain reactions of neutron fission or gas explosion, 
Flory showed that the general criterion for an infinite network was this: if 
if one follows branches of the polymer, every reacted A group must, on 
average, lead to at least one other reacted A group. Since every reacted A 
group leads to ( f - 1 )  other A groups and a proportion c~ of these have 
reacted, Eq. (1.1) follows. 

By using a microcanonical ensemble, Stockmayer/2~ showed that the 
sol distribution in the RAf model was given by 

wi ~i- 1(1 _ ~).t~ 2i+2 
(1.2) x~= 7 f ~  

where x~ is the number fraction of imers, polymers formed from i 
monomers, w~, which is the number of ways of forming an imer from its 
constituent monomers, equals 

f i ( f i -  i)! (1.3) 
w i -  ( f i - 2 i +  2)! 

Cohen and Benedek (3) give a statistical mechanical basis for the RAf 
model. Other elaborations of Flory's work include the size distribution for 
the ARBg model (1~ and the gel point and size distribution for the AIRB ~ 
model, f>~2, g>~2. (.6) In the AuRBg models (see Fig. 1), each monomer 
has f functional groups of type A, g functional groups of type B, and A 
groups react with B groups to form asymmetric (A-B) bonds between the 
monomers. The AfRBg models are otherwise similar to the RA 1, model. 

The Principle of Equireactivity is applicable to several experimental 
systems. Experimental results for c~ c are higher than the theoretical value 
predicted by Eq. (1.1). Flory/1) hypothesized that this was due to ring for- 
mation, which his theory neglected. With ring formation the reaction had 
to be driven further to produce the branching implied by Eq. (1.1). 
Equation (1.1), then, is really a lower bound for the critical extent of reac- 
tion. 

Gordon (7~ and Good (8) generalized the Flory-Stockmayer theory by 
making full use of branching processes, the formalism which describes 
chain reactions. This formalism makes Assumptions (1) and (2) of the RA s 
model, but relaxes the Principle of Equireactivity and replaces it with 

3'. The First-Shell Substitution Effect (FSSE). To explain this term, 
choose a monomer at random from the system. The number of monomers 
bonded to it has a well-defined probability distribution. In Flory's 
equireactive RA s model, each group on the monomer reacts independently 
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with probability ~. The probability that a monomer chosen at random has i 
reacted functional groups is 

f~ ~i(1 -c t )  f - i  (1.4) 
P i -  i! ( f  - i)! 

In contrast to the Principle of Equireactivity, FSSE does not restrict Pi 
to a binomial form. FSSE does, however, assume that the monomers are 
bonded together at random, i.e., the number of bonds on a monomer does 
not influence the number of bonds on the monomers attached to it. The 
FSSE assumption, which is essentially a Markovian property, yields 
analytic solutions for the gel points and moments of the polymer dis- 
tribution. 

FSSE is a weaker assumption than the Principle of Equireactivity. For 
example, in the RA 3 model, it does not exclude the following steric effect: 
two reacted As might reduce the reactivity of the third A on a monomer. 

Macken and Perelson (9~ give a review of branching processes as 
applied to polymerization problems. Elaborations of the branching process 
formalism apply to the AfRBg model (1~ and allow systems with multiple 
monomer and bond types. (1~) 

None of these models addresses the problem of ring formation, 
however. This had led to the application of other models to 
polymerization, notably percolation, scaling, and fractals. (~2 14) 

Attempts to include ring formation in Flory models are few: Jacobson, 
Beckmann, and Stockmayer (15"16) allowed for ring formation in linear RA2 
polymerizations and compared their model to experiment; Gordon and co- 
workers(17 191 introduced the Spanning Tree Approximation into the 
branching process formalism; and Hoeve (2~ generalized the Jacobson- 
Stockmayer treatment to include simple rings in branching RA s (f>~ 3) 
polymers (see Fig. 2). 

Hoeve's method treats the rings as another type of monomer, extends 
the Jacobson-Stockmayer statistical mechanical weighting for rings in RA2 
polymers, and then combines all monomers and rings at random. 

Like Hoeve's paper, the body of this paper neglects fused rings, i.e., 
those rings which are not simple. "Rings," unless otherwise specified, refers 
to simple rings only. Extension of this paper to fused rings is 
straightforward, though messy. 

This paper generalizes Hoeve's by introducing structure into the 
polymers as follows: There are certain bonds which, when broken, discon- 
nect the polymer. Call these bonds articulation bonds. When all articulation 
bonds are split, the polymer is broken into its constituent units. As Fig. 2 
indicates, this description decomposes the polymer into a branched struc- 
ture containing monomers and ringed units. We shall assume FSSE for 
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Fig. 2. This figure shows our basic description of polymer structure. There are certain bonds 
which, when broken, disconnect the polymer. These articulation bonds are hollow in Fig. 2. 
The pieces into which the polymer is broken are called units. The units are in boxes in Fig. 2. 
There are several types of units: they may be monomers; simple rings (marked by "S"); or 
complex rings such as 0 rings (two triply bonded monomers with chains between) or 8 rings 
(two simple rings with a common quadruply bonded monomer). Even more complex rings are 
possible. The articulation bonds impose a tree structure on the polymer. 

units ( ra ther  than  jus t  for m o n o m e r s ) ,  so tha t  bonding between the units 

occurs at random. The  p r o b l e m  then is twofold:  ( 1 ) d e t e r m i n a t i o n  of  the 
f requency of  each type of  unit,  and  ( 2 ) c a l c u l a t i o n  of the po lyme r  dis- 
t r ibu t ion  as the different units combine  at  r andom.  

We refer to F S S E  for units as the " Independence  A s s u m p t i o n "  (IA). 
This pape r  reserves the term " F S S E "  for independence  of monomers .  " IA"  
seems a more  a p p r o p r i a t e  te rm for independence  of  units because,  as G o r -  
don  and  Temple  ~2j~ po in t  out,  g raph ica l  theor ies  of  po lymer i za t i on  are  
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analogous to ideal gas approximations in the thermodynamics of gases. As 
the molecules of an ideal gas are statistically independent, so are the units 
within our "ideal" graphical polymers. 

The present paper confines its discourse to equilibrium, although the 
discussion speculates on kinetic extensions. The statistical mechanical 
approach taken gives all parameters in terms of thermodynamic variables. 
This has the advantage of allowing comparison between thermodynamic 
quantities for branched and linear polymers. 

The progression of this paper is from weaker to more restrictive 
assumptions. Section 2 gives the statistical mechanics of any ideal theory of 
polymer solutions, while Section 3 gives the statistical mechanics of those 
theories employing the IA (which include those assuming FSSE). Between 
them, Sections 2 and 3 give the statistical mechanics of IA for multiple unit 
and bond types. 

The progression is also from complexity to simplicity, from polymers 
to units to monomers to equireactivity. Section 2 hinges on a quantity 
called the polymer partition function, while Section 3 uses IA to relate the 
polymer partition function to a unit partition function. Section 4 then gives 
the unit partition function appropriate to rings in terms of a monomer par- 
tition function. For equireactive systems, the monomer partition function 
has a particularly simple form, and Section 5 solves the equireactive case 
for the RAs, AsRBg, and RAI-RBg models. [The RAu-RBg model has 
both RA i and RBg monomers and only (A B) bonds form between the 
monomers. See Fig. 1.] In Sections 4 and 5, the statistical mechanical 
weights for ring formation are based on random flights, but this is an 
arbitrary choice. As long as IA is retained, changing these weights 
according to the dictates of another theory is not difficult. 

The formalism of Sections 2 and 3, though based on statistical 
mechanics, is essentially equivalent to the branching process formalism 
(Appendix A). The branching process formalism is not an efficient 
mathematical vehicle for our ring theory, because the probabilities it 
introduces [Eq. (1.4)] produce an inconvenient flood of normalizing fac- 
tors (see Appendix A). The IA formalism of Sections 2 and 3 is superior 
when rings are present, the branching process formalism if they are not. 

The RAf, A sRBg, and RAs-RBg models provide examples of the IA 
formalism. Sections 3, 4, and 5 give a parallel development of each of these 
models. The development of the RA s model is independent of the other two 
models. If the reader wishes, he can examine it alone on a first pass. I 
thought it better to collect all the common models into a single paper, 
rather than scatter them throughout the literature. 

There has been some hope that introducing rings into the Flory theory 
might change its critical behavior. This critical behavior is the same as per- 
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colation on a Bethe lattice and yields the so-cailed classical critical 
exponents. Section 6 indicates that even if rings are accounted for, for 
theories based on IA, the critical exponents remain classical. 

In statistical mechanical problems, combinatorics are usually done 
with the canonical partition function. To avoid cumbrous formulas in Sec- 
tions 2 and 3, however, grand partition functions handle much of the com- 
binatorics in this paper. As a result, IA and the ideal gas analogies lead to 
somewhat unusual combinatorial proofs. The reader who feels uncomfor- 
table with such "proofs" should recall that they are merely plausibility 
arguments for the equations. The justification of such proofs rests on 
agreement with experiment or previously accepted theories. 

Accordingly, Section 7 briefly compares our theory with experiment. 
The appendices also indicate the equivalence of the present approach to the 
following theories: (A)the branching process formalism; ~7) (B)the ther- 
modynamics of the equireactive Flory RAf model; (3) (C) rings in equireac- 
tive linear RA2 polymers; ~5) and (D)simple rings in equireactive branched 
RAf polymers.~2~ 

2. IDEAL SOLUTION STATISTICAL M E C H A N I C S  

[Please note that this section overburdens the mnemonic value of the 
letter "P" (polymer, pressure, partition function, etc.). I ask the reader's 
forbearance in noting the differences in case and style between the various 
Ps, most of which appear only in this section.] 

There are two approaches to the statistical mechanics of polymer 
solutions. The first uses lattice statistics; the second uses ideality 
assumptions to introduce mathematical independence amongst the 
molecules in solution. Because the first approach is usually longer and 
requires approximations, (2) and because the simplest approximations lead 
to results identical to ideal theories, (22) we adopt the ideality approach. 

This approach treats the solution as a mixture of ideal gases. We 
examine the following grand canonical ensemble: consider a fixed volume 
V in equilibrium with an infinite bath at temperature T. The volume freely 
exchanges material and energy with the bath. The bath contains a polymer 
solution composed of a solvent S and several types of polymer, which we 
index by H. Let / ~  be the chemical potential of polymers of type H 
(Hmers). 

Assume momentarily for the sake of argument that the volume V con- 
tains only one species of ideal gas molecule with molecular canonical par- 
tition function Z. I-In this paper, Z with various subscripts will always 
denote canonical partition functions. For such Z, implicitly, Z =  Z(T, V).] 
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If # is the chemical potential of a single ideal gas molecule, then, in a slight 
abuse of terminology, we call [exp(fl/~)Z] the molecular grand partition 
function. This abuse of terminology is unambiguous and is very useful later 
on. The grand partition function of the gas in V (23) is 

[exp(fl/t)Z]' 
= i! - exp [exp(fl/~)Z] (2.1) 

i=1  

where fl = (kT)- 1 and k is Boltzmann's constant. There may be any num- 
ber i of molecules in V, hence the summation. Because the gas is ideal, the 
molecules are independent, so the molecular grand partition functions are 
multiplicative, i! appears in the denominator because the molecules are 
interchangeable under quantum statistics. 

Under the ideality approximation, the molecules in a polymer solution 
are treated as independent ideal gases. The grand partition function for the 
polymer sol phase is therefore the product of the grand partition functions 
for the solvent and polymer molecules: (23) 

-~=exp [exp(fi~ts) Zs + ~ exp(fi#n) Z~] (2.2) 
(H) 

where Zs is the canonical partition function for a solvent molecule, and #s, 
its chemical potential. ZH and/~/are  the corresponding values for a Hmer 
and the sum is over all polymer types H. For reasons given in the Dis- 
cussion, we consider only pregelation polymer systems in this paper, so the 
gel does not appear in Eq. (2.2). 

The principle that the grand partition function for a system composed 
of independent particles is the product of the grand partition functions for 
the particles will be used in a somewhat unusual context in Section 3. 

The grand potential of the volume V is 

~?= pV= -kTln 

=-kTIexp(fl#s)Zs+ ~ exp(fl#~) Z n ]  (2.3) 
(H) 

The first two equalities are standard formulas. (23) 
All thermodynamic quantities relating to the polymers can be 

calculated by means of the polymer grand partition function 

P = ~ exp(fi#~) Zr~ (2.4) 
(H) 

[Again, the (ab)use of the term "polymer grand partition function" is 
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similar to the use of "molecular grand partition function" following 
Eq. (2.1).] For  example, note the standard formula (23) 

dg-2 = - S  d T - p  d V -  ~ U d# (2.5) 

S is the entropy of the system; p is its pressure; N is the number of particles 
of a certain type in the system, # the corresponding chemical potential; and 
the sum is over all types of particles in the system. 

Therefore the total number of Hmers in V is 

Nn  = - (8(2/@n) r, v,~ ~ ~R 

= kT(OP/8#n) r, v,, ~ , ,  = exp(fi#n) Zn (2.6) 

where the partial derivative is taken in Eq. (2.4) with T, V, and all chemical 
potentials except #/~ held constant. 

Hereafter we make the assumption of spatial homogeneity: all 
canonical partition functions Z have a volume-independent part z satisfy- 
ing zV= Z. Also, unless otherwise indicated, lower cases will indicate the 
intensive quantities corresponding to extensive variables (e.g., nV=N,  
zV= Z, etc.). Equations (2.4) and (2.6) have obvious lower-case (intensive) 
analogs. 

For  example, let p = P / V  be the intensive polymer grand partition 
function. Equations (2.4) and (2.6) implicitly show that the terms of p are 
the concentrations nn of Hmers in V. Terms of intensive grand partition 
functions like p typically have interpretations as concentrations. In p, the 
terms corresponding to Hmers are marked with the factor exp(fl#n). These 
facts are used several times throughout the rest of this paper. 

Let M index the types of monomers composing a Hmer,  JMn be the 
number of monomers of type M (M monomers) in a Hmer,  and #M be the 
chemical free energy of an M monomer. Equation (2.6) becomes practical 
when combined with 

#n = ~ JMn#M (2.7) 
(M) 

Equation (2.7) states that the reaction forming the Hmer  from its con- 
stituent monomers is in equilibrium: the chemical free energies of the reac- 
tants and products are equal. (24) 

Equations (2.4), (2.7), and the fact that z = Z/V is independent of both 
V and the chemical potentials//11 shows 

k T (  Op ~ = k T  dp = Z  jMaexp( f i# . )z  n 
\8#MJr, U~M d#M (m 

= E jMzinn =nM (2.8) 
(H) 
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i.e., the operator kTd/dl~M acting on p gives the M monomer concen- 
tration. These equations, one for each monomer-type M, implicity yield the 
chemical potential of the different monomer types in terms of the monomer 
concentrations. 

In Eq. (2.8), we have expressed p as a function of T and the chemical 
potentials/ t  M. The total derivative notation is convenient and will be used 
throughout the rest of this paper whenever partial derivatives of p are 
taken. Under those circumstances, it always has the same force as the par- 
tial derivative in Eq. (2.8). 

Let mM and m ,  be the relative molecular masses of M monomers and 
Hmers, respectively. Applying the following operator to p yields the ith 
moment of the polymer concentrations 

Fz 1 Mi= ~ mSnn= ~ jMnmM n~ 
( / ] )  (/] ') L ( M )  J 

kT Z P (2.9) =- m M - -  
(M) d # M  

[Note the total derivatives; cf. Eq. (2.8).] 
The molecular weight averages MW,, MW w, etc., are ratios of the 

moments, e.g., MWn = MI/Mo, Ml&w = M2/M1, etc. The average degrees 
of polymerization DPn, DPw, etc., are the same ratios with all rams set 
to 1. (2s) 

With IA, the next section turns Eq. (2.8) [and (2.9)] into a practical 
method for computing polymer statistics. 

3. STATIST ICAL M E C H A N I C S  OF THE I N D E P E N D E N C E  
A S S U M P T I O N  

The equations of Section 2 hold in any mean-field theory of the sol 
phase at equilibrium. We shall use IA (the Independence Assumption) to 
relate several intensive grand partition functions to u, the intensive grand 
partition function for the units. These relationships determine p when u is 
known. From p, the methods of Section 2 can then calculate the statistics of 
the polymer distribution. 

For  the rest of this paper, all the grand partition functions will be 
intensive (e.g., p where p V =  P). Bold lower case Roman letters/,  p, u, etc., 
denote intensive grand partition functions. Because of frequent usage, these 
are referred to as "partition functions" without further qualification. Bold 
upper case Roman letters will now denote indexes, e.g., L for bonds 
(mnemonically, "links," as we require the partition function b elsewhere), 
U for units, etc. 
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As shown in Fig. 2, the articulation bonds decompose the polymers 
into their constituent units. Let U index of the different types of units. Let 
~v be the chemical free energy of units of type U (U units) andjMu be the 
number of M monomers in a U unit. Then 

/~u = ~ JMu,UM (3.!) 
(M) 

Like Eq. (2.7), Eq. (3.1) is merely a statement that the reaction forming U 
from its constituent monomers is in equilibrium: the chemical free energies 
of the reactants and the products are equal. 

Let L index the different types of bonds, denoted by lower case Roman 
letters a, b, c, etc. Define the conjugate of an a bond, an a* bond, to be an a 
bond as viewed from the opposite end. For example, in the A, RBg model, 
if an a bond is an (A-B) bond as viewed from the reacted A group (in the 
direction of the arrows in Fig. 1), then an a* bond is an (A B) bond as 
viewed from the reacted B group (against the direction of the arrows in 
Fig. 1). Obviously (a*)* = a, for any type of bond. We allow the possibility 
of symmetric bonds, e.g., if an a bond is an (AM) bond in the RAy model, 
then a bonds viewed from both ends are the same: a * =  a. 

This notation allows great flexibility: one type of functional group may 
react with several other types of functional groups, or one type of bond 
may appear in several chemically dissimilar positions [e.g., (1 ~ 4 )  and 
(1 ~ 6) glycosidic linkages in starches]. In such cases, we merely give the 
bonds we wish to distinguish different labels. 

Let zu;i, zk..., be the intensive canonical partition funtion of a unit U 
which gives rise to ia bonds, j b bonds, k c bonds, etc. (see Fig. 3). Let a be 
the (implicity, intensive grand) partition function for the polymer part 
attached to the other end of the a bond (similarly b, c, etc.). Two major 
assumptions enter here: (1)unambiguous specification of "the polymer 
part" requires the tree structure introduced by the articulation bonds and 
(2) IA guarantees that a is statistically independent of the particular a bond 
under observation. We call a the a bond partition function; generically, a, b, 
c, etc., are bond-type partition functions. The bonds represented here are 
articulation bonds, not bonds between monomers within the units; the 
reader should keep this in mind. 

The unit partition function u, representing the states of a polymer 
attached to a unit, is 

u = ~ exp(fl/iu) ~ Zu;i,i,k....aibJc ~.-. (3.2) 
(U) ( i , j ,k , . . . )  

In Eq. (3.2), we have expressed u as a function of #4  [note Eq. (3.1)], 
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Fig. 3. UI and U 2 a r e  units (see Fig. 2) in a system with A-B bonds [see Figs. l(b) and (c)]. 
The bonds here are asymmetric and this is indicated by an arrow going from A groups to B 
groups. For the purposes of the text, the solid bond is an a* bond when viewed from B to A, 
or an a bond when viewed from A to B. The solid bond is the incoming bond to the polymer 
part attached to UI through U2. U2 is the initial unit of this polymer part which, as the dots 
indicate, continues on past the bonds on U2. 

Zu;i,j,k,...(T), and a, b, c,.... We use this expression for u th roughou t  the rest 
of the paper, particularly when we take partial derivatives of u. 

This use of grand part i t ion functions is somewhat  unusual. Equat ion  
(3.2) expresses the combinator ics  of the present problem correctly, 
however. Fix a unit in space (see U1 in Fig. 3), hence the intensive grand 
part i t ion function. The initial unit may  be one of several types U, hence the 
first summation.  The factor exp(/3~tu) accounts  for the chemical potential  of 
the unit. The unit may  give rise to any number  i of a bonds,  any number  j 
of b bonds,  etc., hence the second summation.  The factor zu;i,j,k,.., accounts  
for the states of the unit under the prescribed conditions. The bonds  arising 
from the initial unit are again fixed in space, so the final factors aibJe k.- .  
are intensive grand part i t ion functions, and account  for the chemical poten- 
tials and states of the polymer  parts at tached to the unit th rough  the 
bonds. 

To explain Eq. (3.2) further, let us, like Jacobson  and Stockmayer,  (15) 
introduce the convenient  fiction of  a small bond  volume Vs confining any 
two reacted functional groups, vs never appears in our  equations, so for 
convenience we take this fictional quant i ty  to be the same for all bonds. 
When  the intensive canonical  part i t ion function zu;~,j,k,.., is written out  in 
full, its terms define posit ion in the bond  volume Vs for each reacted group 
on the initial unit (U1 in Fig. 3). The same is true for the part i t ion 
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functions a, b, c, etc., which represent polymer parts attached to the initial 
unit. Except for the bond volume it shares with the initial unit, each 
polymer part is independent of the initial unit and the other polymer parts. 
In fact, if each polymer part is viewed relative to its bond volume, IA 
guarantees that everything is independent of everything else. Hence, in this 
"ideal gas" approximation of polymerization, because the polymers are 
systems composed of independent units, partition functions like a, b, e, etc., 
are multiplicative, just as the grand partition functions in Eqs. (2.1) and 
(2.2) were. The form of Eq. (3.2) is the consequence of this independence. 

The next equation uses the full force of IA: the bond-type partition 
functions a, b, e, etc., are given by 

a * =  ~ exp(fl/zu) ~, 
(U) (i ,j ,k, . . .)  

0u 

Zu;j,j.~,... ia ~- lh;ek �9 �9 " 

(3.3) 

with one equation for each bond type (directed bonds appear in two of 
these equations on the left, once as a* and once as a). 

Equation (3.3) expresses a* as a function of the chemical potentials 
#M, the intensive canonical partition functions zu;i, zk,..(T), and bond-type 
partition functions a, b, e ..... Here and throughout the rest of the paper we 
adopt the following convention: partial derivatives of u are taken with u 
given by Eq. (3.2); all variables not appearing in the denominator of the 
partial derivative are held constant. We shall frequently use Eq. (3.3) to 
take derivatives of a, b, e, etc., by the chain rule. 

The justification for Eq. (3.3) is the following: a* is the partition 
function of the polymer part on the end of an a* bond. Call the a* bond 
the incoming bond to the polymer part (see Fig. 3). Examine the initial unit 
U2 on the incoming bond. By IA, the initial unit is statistically identical to 
any other unit. Hence Eqs. (3.2) and (3.3) are identical until the bond-type 
partition functions a, b, e, etc., are considered. The factor zu;i,z~ .... 
corresponds to an initial U unit giving rise to i a bonds, j b bonds, etc. Any 
of the i a bonds on such a unit could be the incoming a* bond. Multiplying 
Zu;iV.k,.. by i accounts for this extra multiplicity of states. Since one of the i 
a bonds is also the incoming a* bond, it does not contribute to the 
polymer part on the end of that incoming bond. Lowering the power of a 
by one in the factor aib;e k..- of Eq. (3.2) accounts for this. The operator 
c~/0a takes each factor a i in Eq. (3.2), multiplies it by i and lowers the 
power of a by one. Equation (3.3) follows. 

Like the unit partition function of Eq. (3.1), we may define a bondpar- 
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tition function, representing the states of a polymer attached to an 
articulation bond 

l-- 1/2 ~ aa* (3.4) 
(L) 

(b is needed later; mnemonically, I for "link"). 
Consider a bond volume fixed in space (! is intensive). The bond may 

be of any type, hence the summation of a over the bond indexes L. There 
are two ends to any a bond: from one end it is an a bond, from the other 
end it is an a* bond. a and a* are the partition functions of these two 
polymer parts relative to the common bond volume. If a bonds are asym- 
metric (aCa*), then the a bond is counted twice in the sum of Eq. (3.4), 
once as an a bond and once as an a* bond, and the factor 1/2 corrects for 
that. If, however, a bonds are symmetric (a--a*),  then the a bond term 
appears only once in the sum of Eq. (3.4), but the factor of 1/2 then 
accounts for the symmetry of a bonding. In the ideal gas analogy, the fac- 
tor of 1/2 is necessary only if the two independent particles (polymer parts) 
composing the system (polymer) are statistically identical. 

The simple but crucial observation which bypasses the need for the 
branching process formalism is this: because the units and articulation 
bonds provide a tree structure for the polymers (see Fig. 2), every polymer 
contains exactly one more unit than articulation bond. Equation (3.2), being 
the partition function for units, weights each polymer by the number of 
units the polymer contains. Equation (3.4), being the partition function for 
articulation bonds, weights each polymer by the number of articulation 
bonds the polymer contains. To restate, recall the terms of (intensive 
grand) partition functions can be interpreted as concentrations [-see 
Eq. (2.6) et seq.]. Each term in Eq. (2.4) for p gives the concentration of a 
polymer; the term corresponding to a polymer with u units appears u times 
in u, since terms of u correspond to polymers attached to a unit in a 
specific state; similarly the same term appears ( u -  1) times in !, giving the 
total concentration of articulation bonds in the polymer. (The individual 
terms of the bond partition function even give the concentrations of the dif- 
ferent types of articulation bonds. Section 4 uses this to give the extents of 
reaction for functional groups.) 

The intensive polymer grand partition function is therefore the dif- 
ference of Eqs. (3.2) and (3.4) 

p = u - /  (3.5) 

Whittle (26'27) is the first to point out this generating function 
relationship. By the results in Section 2, Eqs. (3.3)-(3.5) effectively give the 
polymer statistics once u is determined. 
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Equations (3.4) and (3.5) allow a useful restatement of Eq. (2.8) 

n~ = kT dp 
ClUn 

=kT  + 8a8#~ ~ a* 
(L) 

Ou 
= k T - -  (3.6) 

@ n  

Equation (3.3) was used to carry out the partial differentiation and the 
derivative of Eq. (3.4) was symmetrized. 

kTd/dl~  operating on Eq. (3.3) yields a gelation criterion: 

da* 82u -- 82u 8b 
kT d# =kT  o~-~n+ L ~--~-~kT - (3.7a) 

(b~L) 8 8b 8#M 

or in matrix notation 

l~ll-kTda*7 r 82u q 
J L d~MJ : L k r  ~a--a~nJ (3.7b) 

The total derivative has the same force as in Eq. (2.8). Equation (3.7) is a 
set of linear simultaneous equations for {kTda*/d#~} over all the bond 
types a * e  L. These equations have a unique finite solution unless 

A = d e t J = d e t  ~a*b 8aSh J = 0  (3.8) 

where 6,*b = 1, a * =  b; ~ ,b  =0,  otherwise. The rows and columns of the 
determinant are indexed by a and b, and, according to our convention, the 
partial derivatives are taken with all chemical potentials and bond-type 
partition functions except a and b held constant. 

Since a* is the partition function of the polymer part on the end of an 
a* bond [see Eq. (3.3) et seq.], the left side of Eq. (3.7a) is the concen- 
tration of M monomers in the polymer part on the end of an a* bond [cf. 
Eq. (3o6)]. At least one such concentration on the left side of Eqs. (3.7a) 
diverges if Eq. (3.8) is satisfied. Hence Eq. (3.8) is a gelation criterion. 

Equation (3.8) is a necessary, though not sufficient condition for 
gelation, however. The necessary and sufficient condition is that the matrix 
J have at least one zero eigenvalue, the remaining eigenvalues positive (i.e., 
J is nonnegative definite). Examine Eq. (3.2): if there are no articulation 
bonds in the system (a = b = e . . . . .  0), J is the identity matrix (all eigcn- 
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values 1). As bonds form, solutions kTda/d#M of Eq. (3.7) remain finite 
until at least one of the eigenvalues of 3 becomes 0. By continuity, the 
remaining eigenvalues must be either positive or zero. 

By Eq. (2.9), the 0th moment of the polymer concentrations, the total 
polymer concentration, is the numerical value of the polymer partition 
function p. The first moment of the polymer concentrations is a linear com- 
bination of the monomer concentrations given in Eq. (3.6). Higher 
moments are more difficult to obtain, but if there is only one bond type, 
the second moment is relatively easily obtained. We handle three cases: 
(A) symmetric (A-A) bonding, one monomer type; (B) asymmetric (A B) 
bonding, one monomer type; and (C) asymmetric (A-B) bonding, two 
monomer types. In Case (C), the first monomer type has only A groups 
and bonds only to the second monomer type, which has only B groups. 

In Cases (A) and (B), let the relative molecular mass of the monomer 
be m and its chemical potential be #. Likewise in Case (C), except we sub- 
script m and # by A and B for the monomers with A and B groups, respec- 
tively. We shall frequently refer to the lists of equations which follow. 

Case A: One Type of Monomer, A-A Bonding 

Denote (A-A) bonds by a and the a bond partition function by a. 
Since a bonds are symmetric, Eq. (3.3) becomes 

8u 
a = - -  ( 3 A . 1 )  

8a 

In Eq. (3.4), the bond-partition function I is a single term la2. By Eq. (3.6), 
the monomer concentration is 

\~#J(~3-P'] r = kT dp 8u = k T - -  (3A.2) n = kT ~ ~3# 

The 0th moment of the polymer concentrations is given by the 
polymer partition function 

p = u - �89 2 (3A.3) 

To obtain the second moment of the polymer concentrations, we need 
the following preliminary result 

da 82u 82u da 

d~ - 8a 8# t- 8 a :  d# 

= A 1 02u (3A.4) c3a c3y 
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where 

0211 
A = 1 - 0a--- ~ (3A.5) 

[The total derivative in Eq. (3A.4) has the same meaning as it did in 
Eq. (3A.2).] Differentiating Eq. (3A.1) with respect to /~ yields the first 
equality of Eq. (3A.4); solving for the left side of Eq. (3A.4) then yields the 
second equality. 

A is the A of Eq. (3.8), so A = 0 at the gel point (necessary and suf- 
ficient in this case). Equation (2.9) for the second moment now gives 

[ d12  d O u  M 2 =  kTFFI'-~ p = (/'g/k T) 2 ~-~ 0--- ~ 

//02U 02U da)  

=(mkT)2 FOeu ( 0211 ~2~ 
La , + (3A.6) 

[For  partial derivatives, u is expressed according to Eq. (3.2), so the chain 
rule must be used to eliminate the intermediate parameter a.] Equation 
(3A.2) yields the second equality. According to Eqs. (3A.4)-(3A.6), M 2 

blows up at the gel point, as of course it should. 
These equations give all the polymer statistics of interest in terms of 

the unit partition function u and its derivatives. Sections 4 and 5 give u for 
insertion into the formulas of this and the following subsections. 

Case B: One Type of Monomer,  A - B  Bonding 

Call (A-B) bonds as viewed from the A group a bonds, and from the 
B group, b bonds. Of course, a* = b and b* = a. Equation (3.3) becomes 

0u 
b = - -  (3B.1) 

8a 

A similar equation with a and b reversed also holds. In Eq. (3.4), the bond- 
partition function l = � 8 9  Equation (3A.2) continues to 
describe the monomer concentration. 

The 0th moment of the polymer concentrations is given by the 
polymer partition function 

p = u - ab (3B.2) 

822/43/1 2-11 
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To obtain the second moment of the polymer concentrations, we dif- 
ferentiate Eqs. (3B.1) [as we did in Eq. (3.7)] to obtain the following 

da 92u 92u da 92udb 

d# - ~b ~/~ F 9b 9~ d~t § ~b 2 d~ 

db (~2tl 02u da 92u db 
d # - g a  9# +~aZd-~ + 9a 9---b d# 

(3B.3) 

Considered as a simultaneous equation in da/d# and db/d#, Eq. (3B.3) has 
a matrix J whose determinant is 

92U x~ 2 02U 0211 (3B.4) 
3 = 1 - - ~ - - ~ )  9a 2 0b 2 

3 is the 3 of Eq. (3.8), so 3 = 0 at the gel point (necessary condition). 
Equation (2.9) for the second moment now gives 

M2 = kTm P = (mkT)2 d~ 0# 

=(rnkT)2(92u 92u da ~2_u db'] 
\9# 2 + Oa 9-----# d# { 9b 9~ d#J 

= fm  )2  92. F( 92n  292. 

92u 92. 9 u) (9 n)292.1  
(3B.5) 

[As in Section 3A, for partial derivatives, u is expressed according to 
Eq. (3.2), so the chain rule is used to eliminate the intermediate parameters 
a and b.] Solving Eq. (3B.3) by Cramer's rule gives da/dkt and db/d# in 
Eq. (3B.5). Again, the polymer statistics are determined by u. 

The necessary and sufficient condition for a gel point given after 
Eq. (3.8) becomes 

92U //92U 92UX/1/2 
1 = ~-~-~ + t~--~a 2 9bZj (3B.6) 

Equation (3B.6) is a consequence of the following trivial theorem: J = 
[aij]2• is nonnegative definite with a zero eigenvalue if a11~>0 and 
det J = 0. 
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Case C: Two Types of Monomer ,  A-B Bonding 

We call the monomers bearing A groups A monomers, and those 
bearing B groups B monomers. Equation (3B.1) and its reverse with a and 
b interchanged continue to give the bond-type partition functions. In 
Eq. (3.4), the bond-partition function still satisfies l=ah.  By Eq. (3.6) the 
A-monomer concentration is 

d•A Bu (3C.1) rl A -= kT = kT 0#---s 

and similarly for the B-monomer concentrations. [Out of harmless con- 
venience, we retain the total derivative notation. It has the same force as 
the partial derivative notation in Eq. (3.6), however.] 

The 0th moment of ttie polymer concentrations is given by the 
polymer partition function p. p has the same form as in Eq. (3B.2). 

A in Eq. (3B.4) and the gelation criterion Eq. (3B.6) remain 
unchanged. The second moment of the polymer concentrations can be 
calculated as in Section 3B by differentiating Eqs. (3B.1), first with respect 
to #a and then with respect to #B to obtain analogs of Eqs. (3B.3). 
Equation (2.9) gives 

[ ( d + mR ~ p (3C.2) Me= kT mA~pA 

Recall that the operator d/d]2 A = ~/~A -~- ~a/~#A d / O a  + ~b/~/z B d/~b (and 
similarly for did#n). After some messy algebra like that producing 
Eq. (3B.5), Eqs. (3.6) and the analogs of Eq. (3B.3) give 

f 2 Uu ~2u ~2u 
Mz=(kT)  2 ~mA ~2A+ : r n A m B - - +  m ~ - -  

~/~A ~#B ~ 2  

F/ ,~2u ~2 u \2 ~2 u 
mA - -  + m B  - -  + A-~E~ 6~a0#A 0a~,uB) ~2b 

/ ~2u c~2u \ /  02u 02u \ /  02u 
+ 2~mAO---~-~flA+mBO--~-~B)~mAO---ff-~flA+mBO---~~flB)~I--c3aOb; 

{ ~2 u ~2 u \2 ~2uq ) 
+ ~mA~--ff-~A+mB~---ff-~B) -~-aa]~ (3C.3) 

Not surprisingly, this is Eq. (3B.5) with the operator m A C~/~3#A + m B 0/c3#a 
replacing m 0/~3#. Again, calculation of the polymer statistics reduces to 
determination of the unit partition function u. 
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4. RANDOM-FLIGHT RINGS IN BRANCHED POLYMERS 

Jacobson and Stockmayer (15) gave weights for ring formation in linear 
RA2 polymers. Hoeve (2~ applied those weights to ring formation in 
branched RAf (f>~ 3) polymers. For monomers, this section extends those 
results from equireactivity to FSSE. Note, however, that the formalism in 
Section 3 can handle arbitrary ring weights, not just the random-flight 
weights presented here. 

This section extends the ring weights for the three cases handled by 
Jacobson and Stockmayer to FSSE in branched polymers. The three case 
are (see Fig. 1): (A) systems containing RA I monomers with (A A) bon- 
ding; (B)systems containing AFRBg monomers with (A B) bonding; and 
(C) systems containing both RAf and RBg monomers with (A-B) bonding. 
Like Jacobson and Stockmayer, we make extensive use of the Truesdell 
functions, (28) 

X j 
7 141t 

j = l  

If a polymer chain is formed by several links L joined end to end, the 
probability density (i.e., probability per unit volume) of the two ends coin- 
ciding is 

\ ~d/2 [d/(2~zZb~) ] (4.2) 

Here d is the (Euclidean) dimension in which the random walk takes place, 
and the sum is of the squares of the lengths bL of the links L in the polymer 
chain. This expression makes 

(1) The Random Flight Assumption. (29'3~ The polymer chains are 
freely jointed so that the polymer configuration is a random walk; and 

(2) The Gaussian Approximation. (31'32) The number of steps that the 
walk takes is large enough that the distribution of one end of the walk 
relative to the other is approximately a Gaussian (i.e., multivariate normal) 
distribution. 

We now consider the separate cases. 

Case A: RAt Monomers, A-A Bonding 

Let us call a unit which is a monomer a monomer unit and one which 
is a ring a ring unit. If the number of monomers in the ring is j, let us call 
the ring unit a j ring. 
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Let # be the chemical potential of the single type of monomer in the 
system, zi be the canonical partition function of a monomer unit giving rise 
to i bonds, and let a be the partition function of the polymer part on the 
end of an (A-A) bond. By analogy with Eq. (3.2), the partition function for 
a monomer unit is 

f 
m = exp(/~#) ~ zia i (4A.1) 

i - 0  

For this system, the partition function for a j ring is 

j = m~(2j ) - lp j  (4A.2) 

We use ml,  m2, m3, etc., to denote the first, second, third, etc., partial 
derivatives of m with respect to a. pj is the probability density of closure for 
a ring composed o f j  monomers. 

Figure 4 gives the interpretation of Eq. (4A.2). Consider the j 
monomers from which the ring will be formed. I claim that m 2 is the par- 
tition function for any one of these monomers. (It is not m because the 
monomers are no longer independent units, they will be part of a single 
ring unit.) 

Assume that the number of reacted groups i on a particular monomer 
has been specified. Paint one reacted functional group on this monomer 
black and one red. The black and red groups will attach this monomer to 
other monomers within the ring unit rather than to other units. Hence 
these groups no longer form articulation bonds. The black and red groups 
can be chosen in i ( i - 1 )  ways. These specify extra states that zi does not 
account for. Hence, instead of partition function [exp(/~#)ziai], a ring 
monomer has partition function [ e x p ( / ~ # ) i ( i - 1 ) z i a i - 2 ] .  The operator 
producing [exp(/~/~) i ( i -  1) z ia  i 2] from [exp(fl/~) Zi ai] is double differen- 
tiation, so the partition function for the monomer is m 2. [This is an echo 
of the argument producing the right side of Eq. (3.3).] Since there are j 
monomers in the ring, this gives the first factor in Eq. (4A.2). 

We now form a j chain (Fig. 4b) from the monomers. Note that the 
two end groups of the chain are reacted groups. There are j! ways of 
arranging the monomers in positions 1, 2, 3 ... j of the j chain. We bond 
the black functional group of position i to the red functional group of 
position i +  1, i = 1, 2, 3"- '  ( j -  1). We then divide by j! to account for the 
indistinguishability of the monomers under quantum statistics, so the fac- 
tor j! never appears in Eq. (4A.2). The chain is now oriented from an initial 
red functional group at one end to a terminal black group at the other. 

We now close the oriented j chain into a j ring. There are j distinct 
orderings of the monomers within the oriented j chain which produce the 



(a) 

(b) 

(c) 

Fig. 4. This figure gives the derivation of the ring weights. We start in Fig. 4(a) with four 
RA4 monomers.  Their reacted groups are indicated by gray circles; the remaining functional 
groups are unreacted. On  each monomer ,  we color one reacted functional group red and one 
black. They react red to black in Fig. 4(b) to form a chain with an initial red group and a ter- 
minal black group. In Fig. 4(c), the final stage, the bond volumes of the initial and terminal 
groups are identified. 
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same monomer order within the j ring (these may be found by breaking 
any of the j bonds in the j ring that the j chain produces). In addition, 
changing the j chain orientation by interchanging red and black does not 
affect the j ring produced. Hence division by 2j in Eq. (4A.2) reflects ring 
symmetries. 

Ps in Eq. (4A.2) accounts for the entropy of closing the random walk. 
As in Section 3, denote the bond volume by Vs. Consider the partition 
function for the chain in Fig. 4: there is a factor v~J implicit in it. This factor 
positions the 2j ring-forming functional groups within their respective 

2s-i still occur, bond volumes. If the chain closes to form a ring, factors Vs 
but the terminal black functional group must return to the bond volume vs 
belonging to the initial red functional group. When vs is small, to a good 
approximation this occurs with probability v~. p j, where pj is the probability 
density of the j-monomer random walk returning to origin. 

According to Eq. (4.2), pj for the Gaussian walk in this situation 
is(15,33) 

pj = j -  3/2 b - 3 [ 3/(2rcv) ] 3/2 (4A.3) 

Here v is the number of links between functional groups in a monomer and 
b is the "average" link length. 

Equation (4A.3) assumes that the random walks between any two 
functional groups in a monomer are equivalent. In linear RA2 monomers 
(where the monomers have only two functional groups), this is a trivial 
assumption. In R A f  monomers with f />  3, absence of this assumption poses 
difficult combinatorial problems. 

In summary, the first factor m~ in Eq. (4A.2) gives the monomer par- 
tition functions within a ring; the derivatives occur because ring formation 
consumes two functional groups per monomer; the second factor gives the 
symmetry factor for ring formation; while the third factor accounts for ran- 
dom walk closure of the ring. 

There is a very useful way of looking at Eq. (4A.2). In R A f  
polymerizations, m~ is a partition function which gives the concentration of 
j chains separating a pair of reacted A groups. (Recall that the j chains are 
as in Fig. 4b and have two reacted functional groups on the end.) Again, 
the partition function is not m J: we must specify which A groups join the 
monomers together; the pair of A groups on the end also require 
specification. Likewise, j is the partition function giving the concentration 
of j rings. Hence (2 j ) - lp j  gives the relative frequency of j-ring to j-chain 
configurations. The Jacobson and Stockmayer (15) analysis of RA 2 
polymerization is a special case of the present theory (see Appendix C). 
Hence it must likewise give (2 j ) - lp j  as the relative frequency of j-ring to 
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)'-chain configurations. Equation (4A.2) is therefore quite consistent with 
the Jacobso~Stockmayer analysis. 

Let 

R =  b 313/(2rcv)]3/2 

The unit partition function is therefore 

(4A.4) 

u = m + ~ j = m + �89 ~) (4A.5) 
] - -  1 

Both Jacobson and Stockmayer (15) and Hoeve (2~ use p to denote the 
total extent of reaction of A groups and c~ to denote the extent of reaction 
of A groups in the chain fraction. (The latter provided a convenient inter- 
mediate parameter in their theories, but is unnecessary in ours.) In this 
paper, P A denotes the total extent of reaction of A groups: 

(4A.6) fnpA = a 2 + R~p(m2, 3) 

The first term on the right is twice the a-bond partition function [see com- 
ments following Eq. (3A.1)]. As stated before Eq. (3.5), la2 is the concen- 
tration of articulation (A A) bonds. Hence the concentration of reacted A 
groups forming articulation bonds is a 2. The second term on the right 
represents reacted A groups forming the ring units: formation of every j 
ring consumes 2j groups. Hence, in Eq. (4A.5), �89 5/2 (representing the 
concentration o f j  rings) is multiplied by 2j. The right side of Eq. (4A.6) 
therefore represents the total concentration of reacted A groups. The left is 
the total concentration of A groups (fn), multiplied by the proportion of A 
groups which have reacted, Hence the two sides of Eq. (4A.6) are equal. 

The two terms on the right of Eq. (4A.6) can be interpreted separately 
as belonging to articulation bonds and ring units. Such interpretations are 
used several times in the Appendixes to generate the results of previous 
theories. 

In Case A, Eqs. (4A.5) and (4A.6), in conjunction with Section 3A, 
constitute a formal solution to the problem of simple rings. Section 3A 
requires various partial derivatives of u: the following are typical examples 
of the derivatives: 

~-- = film + �89 3)3 (4A.7) 
u# 

Compare Eqs. (4A.7) and (4A.5) for u and its derivative, m [Eq. (4A.1)], 
containing the factor e ~, is multiplied by fl, as is the Truesdell term of u; 
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because the Truesdell function contains powers  of e ~u, 0/~?# lowers the order 
of the Truesdell function from 5 to 3. 

011 
~aa = ml  -t- �89 m3 q)(m2, 3) (4A.8) 

m2 

This equation gives a typical pattern for differentiation of Truesdell 
functions with respect to a. The differentiation lowers their order by one 
and premultiplies them by the factor shown. 

The equations of this subsection, though constituting a formal solution 
to the problem of simple rings, seem to be intractable to computer solution 
in their present form. When the Principle of Equireactivity holds, however, 
new parameters allow computer solution of the equations. Section 5 carries 
this solution out. 

Because of the computational intractability of the general equations, 
we only give the unit partition function and extents of reaction specific to 
the next two subsections. These unit partition functions and their 
derivatives I-which are similar to Eqs. (4A.7) and (4A.8)] can then be sub- 
stituted into the equations of Section 3. 

Case B: ArRBg Monomers, A-B Bonding 

In this and the following subsection, we mainly quote results since 
they are analogous to the first subsection. The partition function for a 
monomer unit is 

m=exp(/~#) ~ zi, ja 'b j (4B.1 
i= 0,f 
j=O,g 

Here zi, j is the canonical partition function of a monomer unit having 
reacted A groups and j reacted B groups; a is the bond-type partition 
function for the polymer part on the end of an A - B  bond, as viewed from 
the A group; similarly b, as viewed from the B group. 

The partition function for a j ring is 

j = m ~ j  ~pj (4B.2) 

mll is the second partial derivative of m, once with respect to a and once 
with respect to b. m12 represents the third partial of m, once with respect to 
a and twice with respect to b, and so forth. 
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The first factor in Eq. (4B.2) gives the monomer partition functions 
within the ring; the partial derivatives occur because ring formation con- 
sumes two functional groups per monomer, one of type A, the other of type 
B {if a monomer has i reacted A groups and j reacted B groups, then the 
monomer-unit partition function term exp(flp)zi, jaib j is replaced by 
0 exp(fl/0 zija i- lbS-1 = 02/~a ~?b[exp(fi/z) zi,jaib j] in the ring }; the second 
factor gives the symmetry factor for forming the ring (the directed A-B 
bonds remove the factor of two present in the previous case, because the 
bonds now orient the ring); while the third factor accounts for random 
walk closure of the ring. 

In this case, the probability density for return to origin is 

ps= j 3/2b 313/(2rcv)]3/2 (4B.3) 

Again v is the number of links between functional groups in a monomer 
and b is the "average" link length. Equation (4B.3), like Eq. (4A.3), 
assumes that the random walks between any two functional groups in a 
monomer are equivalent. 

We define R as before 

R = b - 3 [3/(27rv) ] 3/a (4B.4) 

In this case, the unit partition function is 

u=m+ ~ j=m+R(p(m11, 5) (4B.5) 
j - -1  

The extents of reaction PA for A groups and PB for B groups satisfy 

fnpA = ab + Rq)(m11, 3/2) = gnpB (4B.6) 

The first term in the middle is the bond partition function [see comments 
following Eq. (3B.1)]. As stated following Eq. (3.4), ab is the concentration 
of articulation (A-B)-bonds. Hence the concentration of reacted A groups 
forming articulation bonds is ab. The second term in the numerator 
represents reacted A groups forming the ring units: formation of every j 
ring consumes j A groups. Hence, in Eq. (4B.5), Rm~l j 5/2 (representing 
the concentration o f j  rings) is multiplied byj .  The middle of Eq. (4B.6) 
therefore represents the total concentration of reacted A groups, which is 
the same as the left side of Eq. (4B.6). The second equality follows because 
the concentration of reacted A groups must equal the concentration of 
reacted B groups, since every A group reacts with exactly one B group. 
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Case C: RAt and RBg Monomers, A-B Bonding 

Once again, we mainly quote results. Let A index an RAf monomer 
and B, an RBg monomer. Let the partition functions for RA F and RBg 
monomer units be 

f 

mA=exp(fl/~A) ~ ZAi ai (4C.la) 
i = O  

g 

mR=exp(/?/~B ~ zmb i (4C.lb) 
i=o 

Because of A-B bonding, every ring unit contains equal numbers of 
RAf and RBg monomers. We call rings containing j A monomers and j B 
monomers j rings. In Case C, j rings contain a total of 2j monomers. The j-r- 
ing partition function is 

j = ms mA2(2j)-1 pj (4C.2) 

The first factor in Eq. (4C.2) gives the monomer partition functions within 
a ring for the RA i monomers, the second for the RBg monomers, mA2 is the 
second partial derivative of m A with respect to a; mB2 is the second partial 
derivative of mB with respect to b. As in Section 4A, the double derivatives 
occur because ring formation consumes two functional groups per 
monomer. The second factor gives the symmetry factor for forming the 
ring. (There is a factor of two as in Section 4A. The A-B bonds, though 
directed, do not orient the ring in this case: they occur in oppositely direc- 
ted apirs.) The third factor accounts for random walk closure of the ring. 
In this case, the probability density for return to origin is 

pj = j  3/2{3/[27C(VAb2 + vnb~)] }3/2 (4C.3) 

Here v A is the number of links between the groups on the A monomers; vB 
the corresponding number for B monomers, bA and bB are the 
corresponding average link lengths. Equation (4C.3) assumes that the ran- 
dom walks between any two A groups on an A monomer are equivalent, 
and likewise for B groups on B monomers. 

We define 

R = {3/[2rC(VAbZA + vBb 2] }3/2 (4C.4) 

The unit partition function is 

U=mA+mB+ ~ J 
j=l  

= mA + mB + �89 ~) (4C.5) 
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If nA and n~ are the concentrations of A and B monomers, respectively, 
then the extents of reaction PA for A groups and PB for B groups satisfy 

f n A P A  = ab + Rcp(mA2mm, 3) = gnnpB (4C.6) 

The first term in the middle is the bond partition function [see comments 
following Eq. (3B.1)]. As in Section4B, the concentration of reacted A 
groups forming articulation bonds is ab. The second term in the middle 
represents reacted A groups forming the ring units: formation of every j 
ring consumes 2j A groups (there are j A monomers in the j ring, each of 
which contributes two reacted A groups). Hence, in Eq.(4C.5), 
l~,,,,j ,,,j i 5/2 (representing the concentration o f j  rings) is multiplied by 2~ u==A2 ===B2 d 

2j. The middle of Eq. (4C.6) therefore represents the total concentration of 
reacted A groups, which is the same as the left side of Eq. (4C.6). As in 
Eq. (4B.6), the second equality follows because the concentration of reacted 
A groups must equal the concentration of reacted B groups. 

5. EQUlREACTIVE RING FORMATION 

This section gives a practical method for computer solution of Sec- 
tion 4 when the Principle of Equireactivity holds. In each case, we can 
represent the zero and second moments and the extent of reaction in terms 
of a free parameter [m2 in Cases A and C; mll in Case B]. Varying the free 
parameter gives the relationship between the moments and the extent of 
reaction. The gel point criterion fixes the free parameter and gives the 
critical extent of reaction as a function of the ring parameter 

r = R/n (5.1) 

n is the total monomer concentration. [In Case C, n = n A + nB.] The larger 
r is, the greater the tendency to ring formation. In our analysis, r and n [or 
r, nA, and nB in Case C] are independent variables. 

The relevant equations, being too long, are not given explicitly. 
Instead, the subsections give u and its partial derivatives for substitution 
into Section 3. This method is effective for computer programming. Sec- 
tion 5D comments on the computer results. 

Case A: Equireactive RAt Monomers,  A-A Bonding 

In this subsection, we assume a single R A y  monomer type, symmetric 
( A - A )  bonds, and equireactivity: 

m = en"zo(1 + e -n~12a)f (5A.1) 
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# is the chemical potential of a monomer, z0 is the intensive canonical par- 
tition function an unreacted monomer, e is the standard free energy change 
occurring when two specified functional groups react. (3) (e denotes the free 
energy because the A y R B g  model usurps the more common g.) e includes 
contributions both from mean-field reorientation of solvent molecules and 
from polymer bond energy and entropy. It also includes entropy costs from 
localization of the two functional groups, e/2 is therefore the standard free 
energy change due to reaction of either of the functional groups, a is, as 
usual, the partition function for the polymer part on the end of an A - A  

bond. The binomial form of Eq. (5A.1) reflects the independent equireac- 
tivity of the f functional groups on a monomer in the Flory R A  s model. 

The reparametrization allowing solution of the equireactive case 
hinges on the introduction of 

s = e/~(1 + e /~e/2a)2 m2/n (5A.2) 

(Recall that m2 is the second partial of m with respect to a.) All the partials 
of m with respect to a can be expressed in terms of m 2 and s: 

m n  1 = s / [ f ( f -  1 )] 

ml  n 1/2 = ( m 2 s ) l / 2 / ( f  _ 1) 

m3n 1/2 = ( f -  2) me(m2/s)  I/2 

m4n = ( f -  2 ) ( f -  3) m~/s 

(5A.3) 

The factors of n ensure that the right sides of Eqs. (5A.3) are nondimen- 
sional. 

After division by n, Eq. (3A.2) and (4A.7) for the monomer concen- 
tration become 

1 = s / [ f ( f -  1 )] + �89 3) (5A.4) 

s is therefore a known function of m2. 
ti in Eq. (4A.5) and its partials are given by 

1 
t i n  

~11 -- 1/2 
- - / I  8a 

02ti 
Oa 2 

= s / E f ( f - -  1)] + �89 2) 

= ~(mf f s )~ /2 / ( f  - 1 )] Is + � 8 9  1 ) ( f - 2 )  ~0(m 2, 3)] (5A.5) 

- ( m f f s ) { s  + l r ( f -  2 ) E ( f -  2) ~o(m2, �89 - q~(m2, ~)] ) 
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d/0# multiplies these expressions by/3 and lowers the order of the Truesdell 
functions by 1 [see Eq. (4A.7) et seq.]. This allows calculation of any of the 
partials of Section 3. 

Case B: Equireactive AfRBg Monomers, A-B Bonding 

In this subsection, we assume a single AfRBg  monomer type, asym- 
metric (A-B)  bonds, and equireactivity 

m = e~'Zo(1 + e B~/2a)f(1 + e-a'/2b) g (5B.1) 

#, Zo, and e have interpretations as in Eq. (5A.1). a and b have their usual 
interpretations as bond-type partition functions. The binomial form of 
Eq. (5B.1) reflects the independent equireactivity of the f A groups and g B 
groups on a monomer in the AfRBg  model. 

The reparametrization allowing solution of this case is 

sa = e~(1 + e /3e/2a)2 m11/n 

sb = e~(1 + e-~/2b) 2 m11/n (5B.2) 

s = e~'(1 + e-~'/2a)(1 + e ~/2b) mll /n  = (s.sb) 1/2 

(Recall that roll is the second partial of m, once with respect to a, and once 
with respect to b.) s~ and sb serve as intermediate parameters which will be 
eliminated in favor of s. All the partials of m can be expressed in terms of 
mll and these parameters 

mn -1 = s/( fg)  

m 1o n - 1/2 = (s/s~) 1 / 2 ( m l l  s)1/2/g 

m2o = (s/s~) r o l l ( f -  1)/g 
(5B.3) 

m21 n 1/2 = (s/s~)l/2(f -- 1 ) mll(m11/s) 1/2 

m22n= ( f - -  1)(g--  1) m~Js 

m31n = (s /s~)( f - -  1 ) ( f - - 2 )  m21/s 

The right sides of Eqs. (5B.3) are again nondimensional. The remaining 
partials we require can be obtained from Eqs. (5B.3) by interchanging 
(f ,  sa) and (g, Sb). The intermediate parameters sa and Sb disappear in the 
formulas of Section 3 because of the identity (s/sa)(s/sb)= 1. Equations 
(5B.3) have been written in a form facilitating this cancellation and initial 
factors of (s/s~) and (s/sb) need not be programmed into a computer. 
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After division by n, Eqs. (3A.2) and (4B.5) for the monomer concen- 
tration become 

1 = s / ( f g )  + r~o(m11,3) (5B.4) 

s is therefore a known function of m11. 
u in Eq. (4B.5) and its partials are given by 

J i l l - - 1  = s / ( f g )  + r~o(m11, 5) 
2 

0u 
Oa n 1/2 (S/Sa)l /2[(mll /s) l /Z/g ] 

�9 { s + r ( f -  l)gq)(mll , 3) ) 

c~2n (5B.5) 
Oa 2 = ( s / s a ) ( m ~ l / s ) [ ( f  -- 1)/g] 

�9 { s + r g [ ( f -  1) ~o(ml,, �89 3)]} 

c32u 
Oa 8b = (m l ~ / s ) { s  + r ( f  - 1 ) ( g -  1) (p(mH, �89 

Interchange of (f, sa, a) and (g, sb, b) gives the remaining partials with 
respect to a and b. 9/0# multiplies these expressions by fl and lowers the 
order of the Truesdell functions by 1 [see Eq. (4A.7) et seq.] as before, 
yielding the remaining partials of Section 3. 

Case C: Equireactive RAF-RBg Monomers, A-B Bonding 

In this subsection, we assume two monomer types, A ( R A f )  and B 
(RBg),  asymmetric (A B) bonds between them, and equireactivity: 

mA = exp(/~#A) ZA0(I q- e-~/2a) F (5C.la) 

mB = exp(fll~B) ZBo(1 + e-fl~'/2b) g (5C. lb) 

#, z0, and e have interpretations as in Eq. (5A.1). In this case, m, #, and Zo 
have subscripts reflecting the two monomer types, a and b have their usual 
interpretations as bond-type partition functions�9 The binomial form of 
Eqs. (5C.1) reflects the independent equireactivity of the functional groups 
in the R A f - R B g  model. 

Define 
El = n A -~ FIB, X A = nA/n, xB = nB/n 

n is the total monomer concentration, and xA and xB are the number frac- 
tions of monomers of type A and B, respectively. 
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The reparametrization allowing solution of this case is 

SA = er + e-~/Za)2 mA2/n 

SB = e~(1 + e ~e/Zb)2 mB2/n 

We also define 

(5c.2) 

m2 = mA2mB2 (5C.3) 

mn2 and mB2 serve as intermediate parameters which will be eliminated in 
favor of m2. All the partials of m can be expressed in terms of ran2, mB2, 
and the parameters in Eq. (5C.2). These equations have the same form as 
Eqs. (5A.3), with one set for A monomers and one set for B monomers. In 
Eqs. (5A.3) replacing m by m a and s by sn yields the equations for A 
monomers; replacing m by roB, S by SB, a n d f b y  g, yields the equations for 
B monomers, n remains unchanged (and hence unsubscripted in the two 
sets of equations)�9 

The intermediate parameters mn2 and roB2 disappear in the formulas 
of Section 3 because of the Eq. (5C.3). 

After division by n, Eqs. (3C.1) and (4C.5) for the monomer concen- 
trations become 

XA = S A / [ f ( f - -  1)] + �89 3) 

XB = S B / [ g ( g - -  1)] + �89 32) 

Sn and SB are therefore known functions of m2. 
u in Eq. (4C.5) and its partials are given by 

u n - 1 =  S A / [ f ( U _  1)] + SB/Eg(g--  1)] + �89 ~) 

(~U -- 1/2 1/2 1/4 1/2 1/2 - - n  =(mA2/m 2 )[(m 2 /SA) / ( f - - l ) ]  ~a 

�9 { S A + � 8 9  1)(f--2)q~(m2, 3)} 

(5C.4a) 

(5C.4b) 

(~2 u 

Oa c~b 

�9 {SA + �89  2 ) [ ( f - -  2) q)(m2, �89 -- q~(m2, 3)] } 

--  [ m U 2 / ( S  A SB) 1/2 ] �89 -- 2)(g -- 2) (P(m2, 3) 

interchange of (f, Sa, a, m a 2  ) and (g, SB, b, mB2 ) gives the remaining par- 
tials with respect to a and b. The intermediate parameters ma2 and roB2 

~2 u (5C.5) 
c3a 2 = (ma2/m~/2)(m~/2/S a) 
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disappear in the formulas of Section3 because of the identity 
mA2mB2/m2 = 1. Equations (5C.5) have been written in a form facilitating 
this cancellation, so that the first factor of au/~?a and a2u/0a2 (and similarly, 
the first factor of 0u/~b and ~2tl/~b2) need not be programmed into a com- 
puter. As before, ~?/#kt A and ~?/~#~ both multiply these expressions by fl and 
lower the order of the Truesdell functions by 1 [see Eq. (4A.7) et seq.], 
except: both #/0a and a/0~A annihilate the second term m~ of u 
[Eq. (4C.5)] and its derivatives (and similarly, c~/0b and ~?/c~/~ R annihilate 
the first term mA and its derivatives. Note the single-term form of Eu/0a  ~b 
above). For  example, compare 0u/0a to the single-term form of 

~211 
~3a O,u H n 1/2 = [ m l / 2 / m l / 4 ] [ m l / 2 / v  ]1/2 

k===A2/='=2 J~,===2 / ~ A !  

" � 8 9  2) (p(m2, �89 

This gives the remaining partials of Section 3C. 

D: Computer Results 

Results appear in Fig. 5. In order to introduce common scales for the 
moment graphs in Cases A and B, we graph the ordinates Mo/n and 
nm2/M2 against PA. The scaling factors n and nm 2 are the values M 0 and 
M2 assume if PA = 0. The ordinates therefore always lie in the interval 
[0, 1]. In Case C, the ordinates are Mo/n and (nAm 2 + n B m 2 ) / M 2  . Because 
MI is a constant [see Eqs. (2.8) and (2.9)], and because M W ,  = M I / M  o 
and M W w  = M2/M1,  the moment graphs are similar to corresponding ones 
for molecular weight averages. 

Similarly, in the graphs of critical extents of reaction PA,. VS. ring 
parameter r, the ordinate is the relative gel point 

(p i _-1 P(PA,.)= Ac0--/'Ac )~(PAtiO - 1) (5D.I) 

PAcO is the critical extent of reaction when the ring parameter r = 0 [and is 
given by Eq. (1.1) for Flory's R A  s model].  P(PA,.)= 0 at r = 0 and increases 
as the critical extent of reaction PAc increases. Physically, the maximum 
value P(PAc) may assume is 1, since critical extents of reaction PA,. may not 
exceed 1. P(PA,.) measures the change in PA,. due to the presence of rings. 

Analytic results in Appendixes E and F for r = 0 and r = oo provided 
computing checks. Experimental ring parameters r are typically between 
0.1 and 3.0. As Eqs. (4A.4), (4B.4), and (4C.4) indicate, r increases if the 
random walk between groups on the same monomer is made shorter, r also 
increases with increasing dilution. 

822/43/1-2-12 
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The text following also gives physical interpretations for r = oo. These 
provide some intuitive background for more realistic values of r. Recall that 
the interpretations and graphs are limited by our restriction to simple rings. 
The discussion speculates on the absence of this restriction. 

Figure 5(a) graphs Mo/n vs. PA for RA2 polymer systems. The r values, 
from bot tom to top, are r = 0.0, 0.5, 1.0, 2.0, 4.0, and oo. (Jacobson and 
Stockmayer (15) also investigated this case theoretically. See Appendix C.) 
For r = 0  (no rings), the graph is linear because all reactions are inter- 
molecular: every extra bond joins two more polymers together. This 
behavior is typical of Mo/n when r = 0. For r = oo (infinite tendency to ring 
formation), there is no branching: all polymers are monomeric,  i.e., either 
monomers  or 1 rings. As P A c  increases, more and more monomers  react 
with themselves, but Mo/n = 1 remains the same. 

The remaining curves show the unusual feature of this graph: Mo/n is 
not necessarily a decreasing function ofp•. The ARB and RA2-RB 2 models 
also display this behavior. For  all these models, nm2/M2 behaves similarly. 
This behavior occurs because r, the ratio of j rings to j chains [-see 
Eq. (4A.3) et seq.], is fixed. As PA increases, the concentration of the larger 
chains initially increases, but finally monomers  are driven into the smaller 
rings in order to consume functional groups. Since the j ring to j chain 
ratio is constant, this implies a decrease in the moments,  as shown in 
Figure 5A. This behavior does not occur for monomers  other than RA2, 
ARB, and RA2 RB2: other types of monomers  can branch out of simple 
rings in order to consume functional groups. 

Figure 5(b) graphs (nAm~ + nBm~)/M2 vs. PA for an RAz-RB 4 model. 
Here x A = ~  and x~= �89  (concentrations of A and B groups are equal). 
mA = 146 and mB= 136 (chosen because these are the relative molecular 
masses for adipic and pentaerythritol, respectively, an actual RA2-RB4 
system). The r values, from bot tom to top, are r = 0.0, 1.0, 10.0, and oo. 
The curves intersect the x axis at the gel points (M2 = oo), e.g., PAc =" 

3-1 /2=0 .577""  for r = 0 .  
The curve for r = oo is typical: the portion left of the cusp represents 

formation of 1 rings from monomers.  For  an RAy-RBg model, 1 rings are 
dimeric, one A monomer  and one B monomer,  so 1 rings contribute to the 
moments  in RA2-RB 4 models. At the cusp, the 1 rings are saturated, so the 
polymers start to form articulation bonds. As the reader can verify, 
articulation occurs if f~>3,  g>~3; if f = 2 ,  g~>3 and XA>XB; or (by 
interchange) if f >  3, g = 2 and xA < xB. 

A cusp occurs for AfRBg models if f~> 2, g~> 2. For  AuRBg models, 
the left portion of the curve before the cusp is constant at 1 because 1 rings 
are monomeric  in AFRBg models. 

Gelation occurs only at PAc = 1 because each 1 ring has two unreacted 
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B groups available for articulation bonds, so the 1 rings cannot branch. 
Hence the 1 rings must be joined end-to-end to form an infinite network. 
This occurs only at complete reaction PAc = 1. In general, if sufficient 
branching from 1 rings can produce gelation, PAc < 1; if not, then gelation 
does not occur. The reader can work out the various cases if he wishes; 
Appendix E gives some analytic results. 

Figure 5(c) gives the relative gel point P(PAc) VS. r for RA F models, 
f =  3, 4, 5, and ~ ,  from top to bottom. Figure 5(c) displays unexpected 
behavior at the origin. The presence of rings initially lowers the gel point 
(!). This can be verified analytically for the RAy model and is due to a 
singularity of the Truesdell function ~0(x, -52) at x = 1. This singularity is a 
negative power of In x and rapidly becomes negligible away from x = 1. 

Hence rings, if very infrequent, stabilize large aggregates and aid 
gelation. If more frequent, they uselessly consume functional groups. I have 
not detected this effect numerically in the other models, nor have I 
bothered to verify it analytically in those cases. The result is purely 
theoretical. Even in the RAf case, the ring parameters required (<0.02)  are 
too small to be achieved experimentally and the perturbation of the gel 
point (0.1%) is likewise too small for experimental detection. 

The RA3 model in Figure 5(c) shows a critical dilution r~1.85, 
beyond which gelation cannot occur. In the RA 3 model, a 1 ring has only a 
single unreacted A group available for articulation bonding. Hence, in this 
model, the 1 rings terminate polymer branches and a critical dilution 
occurs. For  the similar reasons, the RA3-RB 2 (or symmetrically, RAz-RB3) 
model is the only other model which always displays a critical dilution, 
although, as described below, depending on the relative concentrations of 
the species, some other RAu-RBg models also do so. 

Figure 5(d) displays behavior more typical of the RAI-RB 2 (or 
RAz-RBg ) models. The curves graph relative gel points P(PAc) VS. ring 
parameter r, for the RA~RB2 model. The values of the A monomer num- 
ber fraction xA are, from top to bottom, 0.2, 0.3, ~, 0.4, and 0.5. XA = �89 for 
equal concentrations of A and B groups. At this equimolar XA, there is no 
critical dilution and the curve continues out to r = ~ .  At other XA'S, for 
large enough r, the minority functional group is consumed in rings before 
gelation occurs and the curves stop. For  xA = 0.2 and 0.3, the minority A 
groups are consumed in rings and the absence of A groups limits gelation 
at PAc = 1. For  XA = 0.4 and 0.5, the minority B groups are consumed and 
limit gelation at p~c= 1. In the latter cases, the graphs stop at the 
corresponding values of PAc" There is never a critical dilution for RAu-RBg 
models when f / >  3 and g ~> 3. 

This concludes the discussion of the numerical results. The discussion 
points out that some of the results are artifacts of our restriction to simple 
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rings. We now turn out attention to critical behavior of models making the 
IA assumption. 

6. CRIT ICAL BEHAVIOR 

Models involving the IA are equivalent to percolation processes on 
Bethe lattices. Not surprisingly from this perspective, IA models have the 
same (classical) critical exponents. The only Bethe lattice results I know are 
for percolation on a finite number of vertex types. (34) Since rings come in 
an infinite number of sizes (corresponding to an infinite number of vertex 
types), it seems worthwhile to produce the critical exponents in the context 
of the present theory. There has been some hope that introducing rings into 
the Flory theory might change the critical exponents. The present section 
dashes that hope in the context of IA models. 

We shall confine our attention to Case A in Section4: a single 
monomer type bonded by a single symmetric (A-A) bond type and no 
equireactivity assumptions. (Of course, this does not exclude the possibility 
that the monomers can form ring units.) The general observations in this 
section probably hold for more elaborate situations. Equations (3A.1), 
(3A.2), and the gelation criterion A = 0 from Eq. (3A.5) are the basis of the 
exposition. 

In order to streamline the determination of the critical exponents, we 
introduce some notation. For any quantity q, define qc to be its critical 
value, and define d and d+ to be the operators 

d _ q = q c - q  and d+ q= ] q - q d  (6.1) 

The differences are assumed to be infinitesimals. (By analogy, we could 
define another operator: d + q = q - q c ,  but we shall not use it in this 
paper.) The symbol ~ will denote asymptotic proportionality (the ratio of 
the two sides approaches a finite constant); ~ ,  asymptotic equality (the 
ratio of the two sides approaches unity). 

For the case under consideration, our quantities are expressed as 
functions of variables kt and a. We shall use p as the independent order 
parameter. The operator d_ obeys 

d ~ 8 / 8 # ' d _ l ~ + 8 / ~ a ' d  a n d  a (6.2) 

The final asymptotic proportionality holds only if d a on the right side of 
Eq. (6.2) blows up. To determine d a, we apply the first part of Eq. (6.2) 
to Eq. (3A.1): 

(~2 u 82U , 
d_ a = ~--~p d_ # + -~a2 a_ a (6.3) 
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If we solve Eq. (6.3) for d a, A d a appears on the left side of 
Eq. (6.3), where A is defined in Eq. (3A.5). To get the asymptotic behavior 
of A, we see 

3 = 1 - ~ a  ~ = \ ~ a 2 ) c  ~a  ~ 

~ d  a (6.4) 

by Eq. (6.2). Hence Eq. (6.3) implies 

(d_ a)2~d /~ (6.5) 

Equation (6.5), (6.2) (with d_ acting on n), and (3A.2) give the 
following asymptotic equalities: 

(d #)1/2~d a~d_n~d~UP.2 d # (6.6) 
a# 

Equations (2.4) and (2.7) imply that p has the form 

P = ~ exp(ifl/0 zi (6.7) 
i=1 

z i = z i ( T )  is the intensive canonical partition function for an imer. As Eqs. 
(2.4)-(2.6) indicate, the terms of p give the concentrations of the imers. We 
denote these by ni. 

Hendriks et al. (35) note the following result: 
If g(x) = ~  rje jx has a singularity ( - x )  p (p :/= 1, 2, 3,...), then rj has the 

following asymptotic behavior 

g ( x ) ~ ( - x )  p ~ r j ~ j - p - 1 / F ( - p )  

Equation (6.6) gives 

i2zi ~" i 1/2 :=> Z i ~  i -5 /2  (6 .8)  

Hence {n~} obeys the scaling law 

n z ~ i  -5/2 exp[-ico(d #)2] (6.9) 

where co is a complicated but determinable positive constant. 
This is an example of the general scaling law (12) 

ng~ i-TgJ[ i(d+_ #)~/~ (6.10) 
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Under this general scaling law, the exponents r =-52 and a = 1 in 
Eq. (6.9) are sufficient to determine any other critical exponent. (12) These 
values are the so-called classical exponents characterizing critical per- 
colation on a Bethe lattice. 

7. C O M P A R I S O N  TO E X P E R I M E N T  

Table 1 gives gel point data (361 for a mixture of adipic acid 
[ ( C H 2 C H 2 C O O H ) 2 = R A 2 ]  and pentaerythritol [ C ( C H 2 O H ) 4 =  R B 4 ]  at 
various dilutions in dimethoxytetraethylene glycol. The concentrations of 
the carboxyl and alcohol groups are equal, i.e., the number fraction of 
adipic acid is xA = 2 and of pentaerythritol, xB -- 3.1 V is the volume of the 
mixture plus solvent; Vo is the corresponding volume of the mixture in the 
absence of the solvent. The relative molecular mass of the mixture is 
(2)146 + (-~)136 = 142.7 g/tool. The specific volume of the undiluted mixture 
is 0.813 cm3/g, giving a concentration of n--  5.19 monomers nm 3. 

Figure 6 shows a fit of theory ( r=0.115 at the undiluted concen- 
tration) to data. Substitution into Eqs. (5.1) and (4C.4)gives 

vb 2 = v A b 2 + vBb 2 = 0.673 nm 2 (7.1) 

V = V A + V B =  11 is the total number of links in a 1 ring and b is the net 
"effective" link length. Equation (7.1) yields 

b = 0.247 nm (7.2) 

The discussion comments on Fig. 6 and the result of Eq. (7.2). 

Table  I. E f fec t  of  D i l u t i o n  on the  Gel Po in t  a 

% Solvent V / V  o PAc = PB~ 

0 1.00 0.631 
0 1.00 0.630 

21.1 1.36 0.640 
21.3 1.36 0.641 
31.7 1.63 0.658 
40.6 1.92 0.671 
49.7 2.34 0.689 
53.8 2.57 0.709 
66.1 3.27 0.831 

a Specific volume of undiluted adipic acid- 
pentaerythritol = 0.813 cm3/g. Specific volume of 
dimethoxytetraethylene glycol solvent = 1.10 cm3/g. V 0 = 
undiluted volume of mixture; V =  volume in solvent. 
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Fig. 6. PAc VS. r for an adipic acid-pentaerythritol (RA2-RB4) mixture diluted in 
dimethoxytetraethylene glycol, x A  = ~ and x - ~ yielding equimolar concentrations of A and B - -  ~ ,  

B groups, so that P A c  = P ~ c .  The octagons are experimental data from Table I and the dotted 
curve is a theoretical fit with r = 0 . 1 1 5  for the undiluted mixture. 

8.  D I S C U S S I O N  

This paper delivers a flexible ring formalism. Rings introduce great 
problems of notation and description. Accordingly, Sections 2 and 3 
develop the polymer partition function for notation and the unit partition 
function for description (Fig. 2). The basic assumptions in this development 
are: (1)ideality of the polymer solution (to get the polymer grand partition 
function); (2)spatial homogeneity [to get the (intensive) polymer (grand) 
partition function]; and (3)the Independence Assumption (IA) (to get the 
unit partition function). IA, as Gordon (21) points out, is really an ideal gas 
approximation for polymers. This observation is not a casual one, as 
cluster expansions (37) can relax both assumptions (1) and (3). IA cluster 
expansions are equivalent to higher-shell substitution effects (38) and can 
approximate excluded-volume effects. Inclusion of excluded-volume effects 
by considering chain (as well as ring) units is also a possibility. 

Notation and description now aside, the rings are given statistical 
weights. Section4A does this by extending the Jacobson-Stockmayer (15~ 
random-flight ring weights from linear to branching polymers. The exten- 
sion chosen makes the relative frequency of chain to ring configurations 
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[Figs. 4(b) and4(c)] the same for both linear and branching polymers. 
The ring formalism can handle other ring weights, but this choice is a 
natural one. (2~ The ring weights could probably be improved. 

Section5 solves the equireactive cases for the RA s, AuRBg, and 
RAu-RBg models. Computer solution requires a reparametrization of the 
problem. This reparametrization may generalize to nonequireactivity. 

The only units this paper allows are monomers and simple rings. 
Those units generate terms in the unit partition functions of Section 4. In 
Section 5 the nondimensionalized monomer terms contain the factor r ~ 
and, the simple ring terms, r 1. Higher powers of the ring parameter r 
correspond to more complex rings, e.g., r 2 terms (which I have in hand) 
correspond to 0 and 8 rings (Fig. 1). Hence the unit partition functions 
given are really expansions in r, truncated at the term corresponding to 
simple rings. The last two points in Table I and Fig. 6 may be showing 
truncation effects, since high dilutions at those points favor nonsimple 
rings. 

In Section 7, the effective link length b = 0.247 nm is too small. (16'18'~3) 
(The link length could also have been adjusted for fixed bond angles and 
correlations between the azimuthal angles of the bonds. (17)) The experiment 
cannot, however, be considered a definitive test of the theory (nonequireac- 
tivity, non-Gaussian random walks, etc.) and, despite this, b is still 
reasonably close to the expected range of 0.3q3.4 nm. This is an encourag- 
ing result. 

Section 6 on critical behavior raises some very interesting issues. For 
example, exactly what idealized problem was solved? Given the 
assumptions of the discussion's first paragraph and the truncation of the 
unit partition function, we solved ring formation "exactly" if there are 
enough rod shaped links in a monomer to provide Gaussian random 
walks. Up to any fixed size of polymer, the links can dodge the excluded 
volume issue by being sufficiently thin. 

From this perspective, the Malthusian paradox (39) in branching 
processes results from an improper interchange of limits. (Our theory is 
equivalent to the branching processes: see Appendix A.) The Malthusian 
paradox is that space, which grows cubically with linear dimension, cannot 
contain the branching process gel, which grows exponentially with the 
linear dimension. In the branching process gel, no finite thinness of link can 
compensate for the excluded volume effects. The branching process theory 
must first put "infinitely thin" links into arbitrarily large polymers. Those 
polymers then become the "infinitely large" gel. A theory of the gel phase 
may have to start with the "infinitely large" gel to cope with the problem of 
excluded volume. If this is so, the classical exponents of Section 6 may have 
no bearing on polymeric criticality. 
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Despite this, the gel point in Section 3 is a good theoretical estimate 
(Fig. 6), because it represents a saturation of the sol capacity for 
monomers; ~3) higher monomer concentrations must be absorbed by a gel. 
This is a statement about sols and not about gels, so the reservations in the 
preceding paragraph are inapplicable. 

This paper was careful to consider only the sol phase [Eq. (2.2) 
et seq.]. If, however, the chemical potential of the gel phase monomers 
were known, Eq. (2.8) could be used in reverse: since equilibrium chemical 
potential is independent of phase, (24) the concentration of sol phase 
monomers can be calculated from the chemical potential of gel phase 
monomers. The statistics of the gel phase would then determine monomer 
concentrations in the sol. This paper can accommodate all possible 
chemical potentials in the gel: these form a continuum, ~4~ not just a 
Flory/Stockmayer (41~ dichotomy. 

Despite the foregoing tentative reservations about applicability outside 
the so1 phase, the branching process formalism has been used to calculate 
mechanical properties of gels. (42/ Appendix A relates the unit partition 
function of the ring formalism to the probability generating function of the 
branching process formalism. Branching processes, if correct in the gel 
phase, should be very much improved by inclusion of rings. This inclusion 
is now a very attractive possibility. 

Though this paper restricted itself to equilibrium, the description of 
units and articulation bonds implicit in Fig. 2 is applicable even to kinetic 
polymerization. An obvious question: can then methods of this paper 
handle ring kinetics? 

As a simplest case, consider irreversible polymerization for equireac- 
tive RA 2 model. If cj is the concentration of j chains [ j  monomers in a 
chain, but without the reacted end groups of Figure 4(b)], and nj is the con- 
centration o f j  rings, then the time derivatives of cj and nj obey (33) 

Oj=�89 • CmCn__kc~cj ~ Cn__k~cjj 3/2 

, , + , = j  n=~ (8.1) 

h i = -- ko c i j -  3/2 

k~ is the rate constant for reaction of a pair of A groups, and k~ is the rate 
constant for monomeric ring closure. The factor of j 3/2 appears because, 
as an idealization, Gaussian random walks close the rings. The terms of the 
first equation have physical interpretations: (1)reaction of an m chain and 
an n chain (m + n = j)  produces a j chain; (2) reaction of a j chain with 
anything else removes a j chain; and (3)end-group reaction changes a j 
chain into a j ring. 

The methods of Appendix C show that FSSE restricts the form of cj 
and nj in RA2 ring formation. No expressions of those forms provide exact 



186 Spouge 

solutions of Eq. (8.1). Though approximations are possible, no idealization 
of the kinetic problem has an exact solution satisfying FSSE. Afortiori, the 
basic assumptions of this paper are excluded. 
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APPENDIX  A. EQUIVALENCE TO B R A N C H I N G  PROCESSES 

The branching process formalism is based on probability generating 
functions (p.g.f.'s). The terms of the unit p.g.f, give the probability of finding 
a unit of a particular type in a particular state. Equation (1.4) gives such a 
probability: the unit p.g.f, in the case described would be 

U(A)=  • piAi= ~ 0 ~ i ( 1 - - ~ )  "f 'Ai=(1-c~+aA) f (A.1) 
i = 0  i = 0  

A is a marker variable whose exponent gives the number of reacted A 
groups on a unit. In the notation of Section 3, if we call (A-A) bonds a 
bonds, the exponent also equals the number of outgoing a bonds on the 
unit. In other words, A is also the marker variable for outgoing a bonds. 
Probability generating functions like Eq. (A.1) must satisfy the normalizing 
condition P ( 1 ) =  1: the total probability sums to 1. 

In the general case, when the unit partition function is given by 
Eq. (3.2), the unit p.g.f, is 

u(Aa, Bb, Ce,...) 
U(A, B, C,...)- (A.2) 

u(a, b, c,...) 

where the dependence of u on a, b, c .... has been written explicitly. 
u(Aa, Bb, Cc,...) is the value of u when Aa replaces a, Bb replaces b, Cc 
replaces c, etc. Equations (3.3) give the numerical values of a, b, c,.... The 
terms of U(A,B, C,...), given by Eqs. (3.2) and (A.2), represent the 
probability of choosing a random unit and finding it in a particular state. A 
is the marker variable for outgoing a bonds, B for outgoing b bonds, etc. 
The presence of u(a, b, c,...) in the denominator ensures that U satisfies the 
normalizing condition U(1, 1, 1,...) = 1. 

The a* bond p.g.f. (for a unit on the end of a a* bond) should likewise 
be a*, the a*-bond partition function, appropriately normalized. If we 
denote the a* bond p.g.f, by A*, then Eq. (3.3) implies 

a* = (~?u/~?a)(Aa, Bb, Cc,...) (A.3) 
c~u/~a(a, b, c,...) 
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where the dependence of 0ufi?a on a, b, c .... has been written explicitly. 
(~?u/0a)(Aa, Bb, Ce,...) is the value of ~?u/~?a when Aa replaces a, Bb replaces 
b, Ce replaces e, etc. Equations (A.2) and (A.3) imply 

A* - (OU/~?A)(A, B, C,...) 
(OU/•A)(1, 1, 1,...) 

(A.4) 

This is the universal consistency condition of Gordon and Malcolm, (43~ 
also noted by Whittle. (26) 

Equation (A.4) is the mathematical springboard for the branching 
process formalism [cf. Ref. 11, Eqs. (4) and (5)]. In the present context, the 
unit and bond p.g.f.'s are renormalized unit and bond-type partition 
functions. Branching processes are therefore equivalent to the formalism in 
Section 3. 

APPENDIX B. STATISTICAL M E C H A N I C S  OF THE FLORY 
RAf MODEL 

In this appendix, we assume a single R A / m o n o m e r  type, symmetric 
(A-A) bonds, equireactivity, and no rings: 

u=e~:'Zo(1 + e  /~/'2a)/ (B.1) 

Compare Eq. (B.1) to Eqs. (SA.1) and (4A.5). Absence of additional terms 
in the unit partition function u implies that monomers are the only units in 
the system, i.e., R = 0 (no rings), e corresponds to the free energy g in the 
Cohen-Benedek ~ notation. 

Equations (3.3) and (3.5) become 

a = f e  ~/2e~"zo(l+e /~/ '2a)f  1 (B.2) 

1 2 (B.3)  p = u - ~ a  

We require a version of the Lagrange expansion: (44) 
If a = e~"g(a), then 

d i -  1 

f ( a )  = f (0 )  + ~ ~ { f ' ( a ) [g(a ) ] i}a  =o e'/3" (B.4) 
i = 1  

where {.}a = 0 indicates evaluation at a = 0. 
Applying the expansion to Eqs. (B.1)-(B.3) yields 

p =  ~ ei~,W~z~ e (i 1)/3~ (B.5) 
i! o 

i = l  

where {wi} are as in Eq. (1.2). 
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Since e ~" marks polymers which are monomers [Eq. (2.4)], the free 
monomer concentration is the first term of Eq. (B.5): 

nl  = e ~ w  l Zo = e ~ z o  (B.6) 

Back substitution into Eq. (B.5) gives 

p=~--[( 
i = 1  

(B.7) 

a result in accord with Eq. (II-15) of Cohen and Benedek. (3) 
Equations (3A.2), (B.1), and )B.2) give the total monomer concen- 

tration: 

n = f - la(e&/2 + a) (B.8) 

Equations (B.8) and (4A.6) give the extent of reaction 

= a/(e a*/2 + a) (B.9) 

Eliminating a from the last two equations yields 

~/(I - ~)2 = f n e  - ~  (B.10) 

a result identical with Cohen and Benedek's Eq. (II-17b). 
Finally, the criticality condition A = 0 from Eq. (3A.5) becomes 

a = ( f -  2)  -1  e fla/2 (B.11)  

which, when substituted into Eq. (B.8) agrees with Cohen and Benedek's 
Eq. (IV-15b). 

It is interesting to compare Cohen and Benedek's canonical ensemble 
approach [their Eq. (II-1)] to the grand canonical ensemble approach of 
Eq. (2.2). The two approaches lead to equivalent results in the equireactive 
case without rings. 

A P P E N D I X  C. EQUIVALENCE TO THE 
J A C O B S O N - S T O C K M A Y E R  M O D E L  

In this section, we assume equireactive R A  2 monomers: 

m = e ~ z o ( 1  + e -  ~/2a)2 (C. 1 ) 

m is the monomer-unit partition function. Unlike u in Appendix B, m is no t  

the unit partition function because there are rings in the system. 
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Section 4A gives the appropriate description of ring formation in this 
system. Note that 

m 2 = 2efl'Zo e ~ (C.2) 

Equation (4A.5) gives the unit partition function 

u = m + 1Rq)(m2, 5) (C.3) 

Equations (3.3), (C.2), and solution of the resulting equation for a 
yield 

a = 2 e -  ~/2efUzo(l  + e -  f e /2a )  

= ef~/2m2/(1 - m2) (C.4) 

Equations (3A.3) and (C.3) give the polymer partition function 

p = m - �89 2 + �89 -~) (C.5) 

When the monomers are bifunctional, all polymers are either chains or 
isolated ring units: only chains can contain articulation bonds. Hence the 
first two terms in the polymer partition function represent chains and the 
third represents rings. 

Consider the ring term in the polymer partition function. Because of 
Eq. (3.1), the chemical potential of a j ring is 

~t i = j# (C.6) 

Equation (2.6) and accompanying remarks justify the following. In 
Eq. (C.5), exp(j/~#)= exp(/~/~j) appearing in the Truesdell term � 8 9  -5/2 

marks the j-ring contribution to p. The concentration of j rings in the 
system is 

- •  i 5/2 (C.7) 
F/j - -  2 ~ u . .  2 j 

Similar considerations apply to the first two terms of p, 

t ~ 2  1,,f~m~ 1 2 1 fie 2 2 m-~,~ -7~  , ( - m 2 )  - T e  m2 ( 1 - m2 )  

= �89 - m2) - 1 (C.8) 

Expand Eq. (C.8) in powers of m2. exp(j/~/~) now marks the j-chain con- 
tribution in the first two terms of p, so the concentration o f j  chains in the 
system is 

cj = �89 (C.9) 
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These results agree with those of Jacobson and Stockmayer (15) if we 
identify our notation with theirs (their B is our �89 

A/V~--~�89 ~ (C.10) 

x~-~m2 (C.11) 

The Jacobson-Stockmayer notation appears on the left. 
In order to compare this appendix with the next one, consider a bond 

in a j ring. The relative weight (2~ for this bond being closed versus open is 
the ratio o f j  rings to j chains, times j, the number of bonds in a j ring: 

JnJ=Re ~7 3/2 (C.12) 
cs 

APPENDIX  D. EQUIVALENCE TO HOEVE'S M O D E L  

The assumptions of Section 5A [equireactive RAf monomers, sym- 
metric (A-A) bonds, and simple rings] are equivalent to Hoeve's (2~ 
assumptions. 

We need a multivariable version of the Lagrange Expansion: (11) 
If a = ~ =  o xj gj(a), then the coefficient of 1-[~_ o x~'J in f ( a )  is the coef- 

ficient of a u- 1 in 

( u -  1)! 
- -  f ' ( a )  I I  [gj(a)] ~ (D.1) 
Hg=0 uj! s-0 

where u = Z us. (Interpret both 0! and 0 ~ as 1.) 
In Eqs. (3A.1) and (4A.8), multiply the first term ml by a marker 

variable Xo representing monomer units, and the term 

�89 m~ j -  3/2 

by a marker variable xj representing j rings. 
We expand the bond partition function �89 2 to get the polymer concen- 

trations. By the remarks following Eq. (3.4), the terms of �89 2 are the 
polymer concentrations multiplied by ( u - 1 ) ,  where u is the number of 
units in a polymer. Because the marker variable xj represents j rings, the 
coefficient of 1-[ xTs in �89 2 is n{uj}, the concentration of polymers containing 
Uo monomer units and ujjr ings,  times ( u -  1), where u =  5~ uj is the num- 
ber of units in a {us.} polymer. 

By using Eqs. (3A.1) and (4A.8) to take the Lagrange Expansion of 
�89 2, the coefficient of I1 x~J in ~a 2 is the coefficient of a" -  1 in 



Equilibrium Ring Formation in Polymer Solutions 191 

[ ( u -  1)! uj! a [ f e  a~/2e~zo(1 -t-e-~e/2a)f-l]u~ 
J 

�9 f i  {�89 - 1)(f-2)e-3e~/2Zo(1 + e- ~/2a)Y 3] 
j = l  

" [ f ( f - 1 ) e  ~zo( l+e  ~/2a) f -2] j - l j -3 /2}uJ  

F = ( u -  1)! uj! [ fe  [~/2e~'Zo] "~ 
/ j = 0  

�9 [ I  {�89 - 1)(f--  2) e-3~/Zz0] 
j - - I  

�9 I f ( f - -  1)e ~Zo] j 1j-3/2},j 

�9 a ( l + e  3~/2a)(f-1)u~ 2)(j--1)uj+(f 3)uj] 

Taking the coefficient of a u 1 and dividing it by ( u -  1) gives 

= e~ I~ uj! [fe~Uzo e ~]~0 
t_ I j = 0  

�9 ~I { ( f - 2 ) j � 8 9  - 1 )e~zo  e ~ ] j j - 5 / 2 } ~  
j = l  

[fuo - Uo + ( f -  2) ~,j-~ 1 juj - -  '~jv~ 1 /Aj] [ (D.2) 
[ f u o - 2 U o +  (f-2)Y',~= x j U , - 2  Z~=I uj+ 2][ 

These results agree with Hoeve's, if we identify our notation with his: 

m j ~ u j  (D.3) 

A +-+ e ~ (D.4) 

x ~---~ e~zo e - l~ (D.5) 

yj+-+�89 ' ~ [ f ( f  - 1)x]J j  -5/2 (D.6) 

Hoeve's notation is on the left. In his paper (2~ (but in our notation), 
Hoeve's Eqs. (5) and (11) identify Re-~j 3/2 as the relative weight for ring 
closure in a j  ring. [Corresponding to the factor �89 -~ in Eq. (D.6).] This 
agrees with the result for RA2 monomers at the end of Appendix C and 
demonstrates that our approach compares systems of bifunctional and mul- 
tifunctional polymers directly�9 

822/43/1-2-13 
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APPENDIX E. L IMITING RESULTS FOR r = 0  

Setting r = 0 in Section 5 gives the following results: 

Case A. Equireactive RAf Monomers,  r =  0 

Equation (5A.4) gives s =  f ( f - 1 ) ,  so Eqs. (4A.5), (4A.6), (5A.5), and 
(3A.1) yield 

m 2 = ( f -  1) P,4 (EA.1) 

Equations (3A.1), (3A.3), (3A.5), (3A.6), (4A.5), (5A.3), and (5A.5) yield 

Mo/n = 1 - � 8 9  - 1) (EA.2) 

A = 1 - m2 (EA.3) 

M2/(nm 2) = 1 + A - l f m 2 / ( f - -  1) (EA.4) 

Case B. Equireactive AtRBg Monomers,  r = 0  

Equation (5B.4) gives s = f g ,  so Eqs. (4B.5), (4B.6), (5B.5), and (3B.1) 
yield 

m l l  = fPA = gP~ (EB.I) 

Equations (3B.1), (3B.2), (3B.4), (3B.5), (4B.5), (5B.3), and (5B.5) yield 

Mo/n = 1 - mll (EB.2) 

A = ( 1 - m 1 1 ) e - ( f  - 1 ) ( g - 1 ) m Z ~ / ( f g )  (EB.3) 

M2/(nmZ)= l + A l m l l [ 2 f g - ( f  + g)  ma l ] / ( f g  ) (EB.4) 

Case C. Equireactive RA~-RBg Monomers,  r = 0  

Equations (5C.4) give s A = f ( f -  I)XA and s ~ = g ( g -  1)xB, so 
Eqs. (4C.5), (4C.6), (5C.3), (5C.5), and (3B.1) yield 

nl2 = ( f -  1 ) ( g -  1 ) f X a p 2 / ( g x B )  (EC.1) 

Equations (3B.1), (3B.2), (3B.4), (3C.3), (4C.5), (5A.3), and (5C.5) yield 

mo/n  = 1 - fX  A P A (EC.2) 

A = 1 -- m2 (EC.3) 

M2/n = m 2  x A -k- mZ XB 

+ A--a fXAPA[ZmAmB+mZA(g--  1 ) p B + m 2 ( f  - 1)pAl (EC.4) 

For the last equation, note Eq. (5C.5) : fXAPA = gXBps" 
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A P P E N D I X  F. L I M I T I N G  R E S U L T S  FOR r =  oo 

Let r ~ oo in Eqs. (5A.4), (5B.4), and (5C.4). Since the left sides of 
these equations remain finite, the argument of q~ must tend to 0 in each 
case. Analytic solution is then possible_because q ) ( x , s ) ~ x  as x ~ 0 ,  
regardless of the Truesdell order s. (~  is asymptotic equality, as usual.) 
Replacing q~(x, s) by x is done without further explanation in all the 
following cases. 

Section 5D gives the physical interpretation of these results. 

Case A. Equ i reac t i ve  RAt M o n o m e r s ,  r =  oo 

Equation (5A.4) gives rise to two cases: either S ~ S o  =0, or s ,~so  >0. 

(a) s .~so  >0. This corresponds to all polymers being monomers or 
1 rings. Equations (4A.6), (5A.5), and (3A.1) yield 

f p A ~ r m 2  (FA.1) 

Equation (4A.6) shows that all polymers remain monomeric while fPA  <~ 2. 

Equations (3A.1), (3A.3), (3A.5), (3A.6), (4A.5), (5A.3), and (5A.5) yield 

M o / n  ~ 1 (FA.2) 

A ~ I  (FA.3) 

M z / ( n m  2) ,,~ 1 (FA.4) 

(a) s~s0=0 .  Articulation bonds have started to form. Equation 
(5A.4) shows that �89 Equations (4A.6), (5A.5), and (3A.1) yield 

f p A  = ( f -  2)2(m2/s) + 2 (FA.5) 

Note that n o w  f p A > 2 .  Equations (3A.1), (3A.3), (3A.5), (3A.6), (4A.5), 
(5A.3), and yield 

M o / n  ~ 2 - �89 (FA.6) 

A ~ 1 - ( fPA - 2 ) ( f -  3)/(f--  2) (FA.7) 

M 2 / ( n m  2) ~ 1 - A - ]( fP A - 2) (FA.8) 

C a s e  B. E q u i r e a c t i v e  AfRBg M o n o m e r s ,  r =  oo 

Equation (5B.4) gives rise to two cases: either S ~ S o  = 0, or S ~ S o  > O. 

(a) s~s0>0 .  This corresponds to all polymers being monomers or 
1 rings. Equations (4B.6), (5B.5), and (3B.1)yield 

f P  A = g p B ~ r m l l  (FB.1) 
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Equation (4B.6) shows that all polymers remain monomeric while fPA <<- 1. 
Equations (3B.1), (3B.2), (3B,4), (3B.5), (4B.5), (5B.3), and (5B.5) yield 

Mo/n ~ 1 (FB.2) 

A ~ 1 (FB.3) 

g 2 / ( n m  2) ~ 1 (FB.4) 

(a) S~So=0.  Articulation bonds have started to form. Equation 
(5B.4) shows that rmll ~ 1. Equations (4B.6), (5B.5), and (3B.1) yield 

fPA = gPB ~ ( f - -  1)(g -- 1) (m. /s )  + 1 (FB.5) 

Note that now f p A > l .  Equations (3B.1), (3B.2), (3B.4), (3B.5), (4B.5), 
(5B.3), and (5B.5) yield 

Mo/n ~ 2 -- fPA (FB.6) 

A ~ ( 2 - -  f p A ) 2 - - ( 1 - -  f p A ) 2 ( f - - 2 ) ( g - - 2 ) / [ ( f  - 1 ) ( g - I ) ]  (FB.7) 

M2/(nm 2) ~ 1 + A l( fpA -- 1 ){2 -- (fPA -- 1 ) ( f  + g -- 2 ) / [ ( f - -  1)(g -- 1)] } 

(FB.8) 

Case C. Equireact ive  RA~RBg M o n o m e r s ,  r =  oo 

Without loss of generality, assume xB ~< xA. Equation (5C.4) gives rise 
to two cases: either sA >~ SB~So = 0, or sB~So > O. 

(a) SB~S0>0. This corresponds to all polymers being monomers 
or 1 rings. Equations (4C.6), (5C.5), (5C.3), and (3B.1) yield 

f p A X A  ~- g p B X B ~ r m 2  (FC.1) 

Equations (4C.6) and (5C.4b) show that all polymers remain monomers or 
1 rings while gpe<~2. Equations (3B.1), (3B.2), (3B.4), (3C.3), (4C.5), 
(5A.3), and (5C.5) yield 

Mo/n ,.~ 1 -- �89 fP  A X A (FC.2) 

A ~ 1 (FC.3) 

M2/n~m2AXA + m A m B f x A p  A + m2 xB (FC.4) 

(a) sB,,~So =0.  Articulation bonds have started to form. Equations 
(5C.4) show that l r m 2 ~ x B ,  s A = f ( f - - l ) ( X A - - X n ) .  Equations (4C.6), 
(5C.5), (5C.3), and (3B.1) yield 

fpAXA = g p B x B ~  [m2/(SASB)] 1 / 2 ( f x A  - -  2XB)(g-- 2) XB + 2XB (FC.5) 
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Note that now g p ~ > 2 .  Equations (3B.1), (3B.2), (3B.4), (3C.3), (4C.5), 
(5A.3), and (5C.5) yield 

Mo/n ~ 1 + xB - f xA  PA (FC.6) 

d ~ [1 - ( f -  2 )3 ]  2 - 62[OeA -1- ( f - -  3 ) ( g - -  3) X B ] ( g - -  3 ) / [ ( g  -- 2) XB] 
(FC.7) 

where 
6 = (fXA PA -- 2XB)/(fxA -- 2XB) 

Finally 

M2/n,,~rn2 xA + 2rnAmexB + rn2 xB 

+ A l{62[rnA(fxA -- 2xB) + m e ( f - -  2) xR]2(g-- 3)/[(g-- 2) x~] 

+ 26(rnA + mB)[rnA(fxA -- 2XB) + m e ( f - -  2) xB] [1 -- (f--  2)33 

+ 62(mA q- mB)2ESA + (f--  3)(g-- 3) XB] } (FC.8) 
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